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 Chapter 5 

Statistical Analysis of the Gumbel Model 
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Abstract  

It is assumed that the samples of maxima come from a 

Gumbel distribution.   Gumbel characteristics are studied: 

moment generating and characteristic functions, mean 

value, variance, skewness, kurtosis, quantiles and mode. 

Return periods and return levels are considered. Statistical 

inference for location/scale parameters: Maximum 

Likelihood Estimators (MLE), Moments Estimators (ME), 

Best Linear Unbiased Estimators (BLUE), Best Linear 

Invariant Estimators (BLIE), confidence interval, tests of 

hypotheses, point and interval prediction, tolerance intervals 

and overpassing probability of some threshold. A worked 

example on maximal yearly precipitations is presented. 

Published Online 

23 June 2017 

 

Keywords  

Statistical inference; 

MLE; 

ME; 

BLUE; 

BLIE; 

Test of hypotheses; 

Tolerance intervals. 

Editor(s)  

J.C. Tiago de Oliveira 
 

5.1 Introduction 

In what follows we will assume that the samples of maxima or minima we are 

dealing with have a Gumbel distribution for maxima             

sometimes denoted           or for minima                We will deal 

only with maxima, minima being dealt with, as said by the relation  

                    Recall that the Gumbel distribution plays a central 

role in extreme value theory, being sometimes called the extreme value 

distribution; it is the limit of both Fréchet and Weibull distributions according 
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to      or     in the von Mises-Jenkinson formula and those distributions 

can be transformed to a Gumbel distribution by simple (but not always 

convenient) logarithmic transformations. 

5.2 Characteristics of the Gumbel distribution 

As the distribution             is not symmetrical, the natural location 

parameter need not be the mean; also the convenient scale parameter will not 

be the standard deviation. Define the standardized or reduced random 

variable as 

      ⁄              . 

The graph of the probability density  
 

 
                          for   

            is given in Figure 5.1. 

 

Figure 5.1 Reduced Gumbel density (for maxima) 

The moment generating function of   is                      

   and that of     is                                      the 

corresponding characteristic functions are                           

                 

All the moments exist as follows from the infinite differentiability of 

       . Let us recall that when the mean value     exists, the central 

moments (i.e., the moments about    ) have the expressions, if they exist, 
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with the variance        and the frequently used linearly invariant measures 

of skewness and kurtosis, 

   
  

  
        

   

In our case we should consider the random variables   and          

with distribution functions                      and the moments and 

coefficients should be noted      and       the values of    and    being 

independent of   and  . We shall, for simplicity, drop the index   always and 

we have  

                

            
        

with                                

Note also that an analogous relation is valid for quantiles: 

if   (  )   (    )       we have                         . 

For the mode     , as for the median  ̃ which is the   -quantile, we have also  

                    

and    ̃       ̃      ̃   

We now have the following values for the coefficients associated with 

 , see Gumbel (1958): 

                                

        ⁄    

 ̃                    

                    

         ⁄             

   √               
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        ⁄             

             

               

The return period, for the overpassing the level (or threshold)  , is, as 

said before, 

                       

on average      trials will be made until the maximum overpasses  , after the 

last overpassing. Note that the probability of overpassing   before or at the 

    trial (year, for instance, if we are thinking of dams) is           

where                    Thus is can be written as      
 

    
    

The probability that the overpassing will occur before or at the return period is 

     
 

    
 [    ]                for large     . 

The maximum likelihood estimator of      is          , where    

is the time to the      occurrence of the overpassing. This is not very 

convenient and it is better to estimate                     ̂   ̂    ̂  ̂   

being the maximum likelihood estimators of       (to be dealt with in the 

next section), or with other estimators of      . 

     A simple and useful conservative approximation for       given by 

Fuller (see Tiago de Oliveira (1972)) is    

      ̃          
   

 
  

with the bounds  ̃          ̃           ̃      .  

Usually, when         ,  engineers call   “the largest flood in 100 

years” or “the 100-years flood”; the expressions in quotes are misnomers 

because the largest flood in 100 years is a random variable. In a sense, on 

average, we expect to have to wait 100 years to observe a maximum yearly 

flood greater than or equal to  . 

From              
 

          
 we see that “the 100-year flood” 

is the     quantile.  
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If a random variable has a Gumbel distribution with parameters 

       the interval [           ] has the probability           and its 

length is         . The shortest interval with a fixed probability   is given 

by the equations (obtained by the Lagrange multipliers method) 

                

              

or                 

             

A table for some relevant values is given below. 

Table 5.1 

 

As could by the expected from the skewness of the distribution the shorted 

interval is not symmetrical; for instance the shorted intervals containing 90%, 

95% and 99% of the population are roughly [               ]  [  

             ]     [                ]   The interval with       

   i.e.,[           ], contains more than 99% of the population. 

5.3 Point Estimation 

The earliest methods of point estimation are the method of moments and the 

method of maximum likelihood. They were evidently used for Gumbel 

distribution. Thus these procedures will be given first, followed by some other 

treatments involving best linear unbiased estimators and best linear invariant 

estimators. 

    b A   (b)   (a) a-b 

1.00 0.00  0.000000 0.000000 1/e 1/e 0.000000 

0.50 0.50 -0.651256 0.831143 0.146908 0.646908 1.482399 

0.20 0.80 -1.125023 1.787968 0.045946 0.845946 2.912991 

0.10 0.90 -1.369180 2.479152 0.019602 0.919602 3.848332 

0.05 0.95 -1.561344 3.161461 0.008521 0.958521 4.722805 

0.01 0.99 -1.893530 4.740459 0.001305 0.991305 6.633989 
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5.3.1. Maximum Likelihood Estimators (MLE) 

The logarithm of the likelihood of a i.i.d. sample             of   

observations with the distribution function            is 

                      ∑          

 

 

 ∑         

 

 

 

 Setting the partial derivatives of       with respect to   and   equal to 

zero, we get, with easy algebra, the maximum likelihood equations: 

 ̂   ̅  ∑  

 

 

      ̂ ∑      ̂

 

 

 

 ̂    ̂      ∑      ̂    

 

 

   

The second equation is very easy to deal with once the first one is 

solved. But this one, involving only   ̂ , is intractable without computers. One 

could use an iterative procedure, starting with the moment estimators for   

and   to follow. However, Kimball developed a simple procedure to get 

approximate solutions. This is described by him in the sections of Gumbel 

(1958) which he wrote, summarizing some of his papers. Panchang and 

Aggarwal (1962) in the “Poona Report” were among the first to use the 

iterative procedure indicated above, with the use of computers. 

Maximum likelihood estimators are asymptotically efficient and 

unbiased with the variance-covariance matrix given by the inverse of 

   

[
 
 
   

      

    
   

      

     
 

  
      

     
   

      

    
 ]
 
 
 

 

with            
 

 
    

   

 
   the density of Gumbel distribution with 

parameters          It is known that: 

The estimators   ̂   ̂  are asymptotically binormal with mean values 

        the asymptotic variance-covariance matrix is  
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[
 
 
    

       

  
    

      

  
  

      

  
   

 

  
  

]
 
 
 
 

and the asymptotic correlation coefficient is  

 ( ̂   ̂)      
  

       
     ⁄          

5.3.2. Moments Estimators (ME) 

From the relations 

          

      
  

 
    

we get as estimators by the method of moments  

   
√    

 
          

     
√    

 
              

where   and    are the average  ∑      
 
  and the empirical variance  ∑     

 
 

 ̅       

        is asymptotically binormal but its efficiency is very low (48%); 

see Tiago de Oliveira (1963). The usefulness of this method, now that 

computers are used, is to give a simple first estimate as a seed for iteration to 

solve the maximum likelihood estimator equations. 

It should be noted that Gumbel (1958) and Posner (1965) developed 

methods close to the method of moments (called “simplified” and 

“modified”), using the plotting positions and a fitted linear regression. 

Mann (1968), by simulation and also using Lieblein‟s (1954) 

simulation, has shown that, for estimating quantiles, the Posner (1965) 

method gives poor estimators for either small or large samples, although the 

Gumbel (1958) method is relatively good for small samples. The BLUE 

methods - see below - are preferable. 



Statistical Theory of Extremes, 93-120, 2017 (Online Edition).                  J. Tiago de Oliveira  

100 

 

5.3.3. Best Linear Unbiased Estimators (BLUE) 

Lieblein (1954) was the first to recognize that as Gumbel plotting used order 

statistics, information was wasted if estimators did not use order statistics. He 

then considered estimating the linear combination  

                    

with, as special cases,                       and the percentile 

    (        )             

where                      He proposed to estimate   by    , a linear 

combination of order statistics in which the weights are determined to yield 

minimum variance unbiased estimators. More specifically,    based on double 

censored data is given by 

   ∑       

   

     

 

where, obviously,               Note that for       we have the 

complete sample. 

The values of    and    for which                    is minimized, 

are functions of        and may be determined by the generalized least squares 

procedure of Loyd (1962), based on the generalized Gauss-Markov theorem. 

As the distribution of order statistics   
  is parameter-free, the mean values, 

variances, and covariances depend only on the standardized distribution 

function and the sample size. For example 

 (  
   )  

    

            
  ∫           [      ]        

 

  
    . 

Those moments were given numerically by Lieblein (1953). 

We start with the fact, observed earlier, because   
         

    that 

 (  
   )          (  

    
 )         

where         
   and      is the       the element of the variance-covariance 

matrix of      
    

      
     The generalized least squares theorem then 

states that if   is the vector of observations, 
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having          with    [    ]   and               [     ]  
  

      where   [
 
   

  
 
   

  
 
   

]
 

  both   and   being known and        

    the least squares estimator of the vector   [    ]  is the value that 

minimizes 

                      

The minimum solution is the one that satisfies the so-called normal 

equations, 

                               and so 

                          

and the variance-covariance matrix of    being 

                          

The estimator    is unbiased and the   
 
 have minimum variance in the 

class of unbiased linear statistics. 

Calculation of the mean values variances and covariances of the order 

statistics    
  and the weights        are tedious and require computers even for 

small values of   . They are now tabulated by Mann (1967) (Appendix C) to 

                        after some previous work by Lieblein and 

Zelen (1956). 

5.3.4. Best Linear Invariant Estimators (BLIE) 

The unbiased condition of the previous section can be relaxed by defining loss 

as the mean squared error divided by    and by considering weighted sums of  

  
                 as estimators of        and of the quantiles with mean 

squared error, invariant under translations and multiplications. The estimators 

among those with smallest mean squared error were called the best linear 

invariant estimators. The BLUE of Lieblein and Zelen (1956) are also 

invariant. Mann (1968) has shown that those estimators of           and of the 

quantiles, are linear functions of the BLUE of     and  . The mean squared 

errors of the BLIE are uniformly less than those of the corresponding BLUE, 

Mann (1968). She says that when       the ratios of the mean losses of the 
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BLUE relative to those of the corresponding ones of the BLIE are large; for 

             the mean losses of the BLUE of   and   increase with   

from                                respectively. The corresponding ranges 

of losses when the BLIE are used are                                

Furthermore, for      the losses of the BLIE of the quantiles and   

are evidently less than or equal to those of the corresponding MLE, which are 

also invariant. Tables of weights for obtaining the BLIE and the losses of the 

estimators are available in Mann (1967), (Appendix C).  

Asymptotically efficient linear estimators of location and dispersion 

parameters were obtained and shown to be asymptotically normal by Chernoff 

et al. (1967). They are invariant and quite efficient with respect to the BLUE, 

even for fairly small    , Mann (1968). Johns and Lieberman (1966) used this 

procedure to determine the weights in the asymptotically efficient linear 

estimators of   and  , but there exist (or existed) computer difficulties in 

comparing the losses of those methods as moment calculations (mean values, 

variances and covariances) of order statistics involve large rounding errors, 

requiring multiple-precision computing techniques. Some comparison, based 

on limited computation, appears in Mann (1968). 

5.3.5. Further methods of linear point estimation  

Other approximating methods exist to generate the weights for linear 

estimators of         

We will enumerate some of them, giving sufficient references; in 

general they do not need, as does Johns and Lieberman‟s (1966) procedure, 

the tedious and error-prone computation of the first and second moments of 

order statistics. 

A method of splitting the sample at random in blocks of           

computing the averages of the blocks, estimating the parameters        from 

those averages with convenient coefficients, and averaging the estimates, was 

developed by Lieblein and Zelen (1956) and also studied in Tiago de Oliveira 

(1972). It was shown there that the asymptotic efficiency for the estimator   

    
        

  of the quantile    has the expression 
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having as        the limit value 0.77, with           
        for the mode 

and         
       for             whose probability is               

See in Figure 5.2 the graph of the efficiency. 

 

Figure 5.2 Asymptotic efficiency of Lieblein-Zelen method 

Let us also refer to a method due to Downton (1966), developed for 

Gumbel minima distribution, now translated to the maxima data. 

Denoting by   ̅  ∑     
 
         ̅  

 

      
∑     

  
   where   

  are the 

usual order statistics, we know that and  ̅ and  ̅ have mean values       and 

     
    

   
           The unbiased estimators 

    ̅       

   
   

           
  ̅   ̅  

(note that  ̅   ̅ ) have the asymptotic efficiency for the estimation of the p-

quantile 

   (    )  
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with a graph analogous to the previous one. 

See also Tiago de Oliveira (1972) for details. In this paper it was also 

searched the asymptotically best sample quantiles   and               

such that the variance of the estimators        
           

      

       
    

     was minimum. The correct results (the ones in the paper had a 

computation error) are                                     and 

the asymptotic efficiency is                    . For more details see in the 

Chapter 9 the section “Estimation using two or three quantiles”. 

Blom (1958) and in Saharan and Greenberg (1962) developed the 

nearly best unbiased linear estimators (NBULE) making use of the quantiles 

             with relation to the order statistics   
 , which Hassanein 

(1964) applied to the Gumbel distribution. The method can be extended to any 

distribution having only location and dispersion parameters, directly or by 

transformation. 

Lieblein (1954) proposed a technique using a finite number (in general 

3) of empirical quantiles. Hassanein (1964) increased the number of quantiles 

to be used for the estimation of   and  . With the sub-sample 

    
     

       
                           for         , and 

with the results of Ogawa (1951), he determined the quantiles to be used 

which maximize the joint efficiency of the estimators. 

Recently Kubat and Epstein (1980) sought the sets of 2 (or 3) order 

statistics   
  and    

  with      [   ]      [   ]       and coefficients 

  and  , such that         with        
          

            
    

   were 

asymptotically unbiased, asymptotically binormal, and with the best 

efficiency that could be attained to estimate a quantile     with          

Let us refer in greater detail to the method of block partitioning, which 

seems simple to execute and does not depend on knowledge of the 

coefficients of linear combination of the observations, although it needs, once 

and for all, the computation of efficiency and the best choice of splitting 

points; see Kubat (1982) for other modifications. The method can be extended 

to Fréchet and Weibull distributions, as will be seen later. 

Take      such that           The averages are 
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 ̅  
 

 
∑   

   
  ̅  

 

   
 ∑   

   ̅   
 

   
 ∑   

  
   

 
       with probability    

It can be shown that   ̅   ̅   ̅   is asymptotically trinormal and we can seek 

coefficients    and              such that the random pair 

          ∑  

 

 

  ̅  

          ∑  

 

 

  ̅  

which is always asymptotically binormal has minimum variance; the 

condition of invariance (i.e., such that                         
    

                     implies ∑   
 
         ∑        

  Then we can 

seek the best   and   in terms of efficiency and thus compute the    and   . 

5.4 Further comments 

As is well known, the method of maximum likelihood is asymptotically the 

best and its use is to be recommended. 

The other methods (from the moments and the various linear 

estimators) are not asymptotically efficient and can be considered either as 

quick methods, if we use only a calculator (and tables if needed), or as a seed 

for the iterative solution of the  ̂  equation. If we do not use tables of 

coefficients, the most practical methods are those of moments — as said with 

efficiency 48% -or the linear methods with 2 quantiles of Tiago de Oliveira 

(1972) and of Kubat and Epstein (1980) or of Downton (1966). 

5.5 Confidence interval estimation  

In principle we should always use the maximum likelihood estimator, either 

for the p-quantile also with a confidence interval, or for the parameter point. 

The maximum likelihood estimator  ̂      ̂  is asymptotically normal 

with mean value        and variance    
 

  (      )
 
   ⁄  

  

 
  

As   
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√ 
( ̂      ̂)          

   
 
          

    ⁄   
 

is asymptotically standard normal and, as  ̂
 
  , by the  -method we know 

that: 

√  
( ̂       ̂)          

   
 

              ⁄    ̂
 is asymptotically standard normal, which gives a 

simple confidence interval for         independent of the parameter   as 

did not happen with the first asymptotic relation. 

We could also compute the bias of estimator of the p-quantile    ̂  

      ̂        as well as its variance     ̂      ̂     ̂       ̂  ̂    

   ̂    
    It seems that the bias converges to zero as        when the variance 

converges to zero as         

As a result of the asymptotic binormality of   ̂  ̂   the asymptotic 

confidence interval with significance level   for       is given by the curve in 

the       plane 

  ̂            ( ̂   )( ̂   )  [
  

 
       ]( ̂   )

 
  

 

 
      

   , 

that is, 

  ̂              ( ̂   )( ̂   )          ( ̂   )
 
  

 

 
           

recall that the quadratic form of a binormal distribution has the exponential 

distribution; see Cramér (1946). 

Also from  ̂
 
   and by the  -method we can have asymptotically a 

part of the ellipsis          

  ̂            ( ̂   )( ̂   )  [
  

 
       ]( ̂   )

 
  

 

 
      

 ̂     

The other estimators given in “Point Estimation” can be used to obtain 

an interval estimation or to test hypotheses about the parameters. Most of them 
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are asymptotically normal with known asymptotic variances and covariances, 

so that one can compute asymptotic confidence intervals; in some cases we 

may resort to Monte Carlo simulation. For more details see Johns and 

Lieberman (1966) and Herbach (1970). The reliability function      

                    where         is an increasing function of      and a 

lower confidence limit on      can be used to determine a lower confidence 

limit on       as                                              

            They proposed to use their asymptotically efficient linear 

estimators of          based on the first   order statistics in a sample of  . Let  

  
    

    . Then for estimates of     we use 

   ∑      
 

 

   

     ∑      
   

 

   

 

Let                         The joint distribution of          is 

parameter-free. Next define a function      with the property that for fixed  

          assuming that                we have 

                           for all  . 

Then 

                                                 

       [
 

 
      

 

 
      ]  

        [     
 

 
 ]       

 

 
           

Thus            being a lower confidence limit for     with confidence 

coefficient  , correspondingly                           is a lower 

confidence limit for        also with confidence coefficient  . 

Finally they show that, asymptotically,    and                  are 

efficient bounds for      and        For                       and with 

four values of   for each    , they computed Monte Carlo simulations of the 

distribution of          for fixed values of         . Thus they generated 

tables from which one can obtain the bounds for      for specific         

                        To get a lower bound on        we find in the table 

a value of                         corresponding to   which is         



Statistical Theory of Extremes, 93-120, 2017 (Online Edition).                  J. Tiago de Oliveira  

108 

 

where   is the table value of        associated with                        

for the appropriate confidence level. 

5.6 Tests of Hypotheses 

Hypothesis testing on parameters can be handled, as usual, by relating the 

acceptance region to the confidence region. 

Consequently, the asymptotic test of                           

          with significance level  , is given by the acceptance region : accept 

         if this point falls in the interior of the ellipsis given for the 

confidence region, and reject otherwise. 

Concretely, we will use as the acceptance region, for the significance 

level   , 

  ̂     
          ̂       ̂       

  

 
          ̂     

  

 
 

 
        

    

Here we do not need to substitute   
   by  ̂   in the RHS because in the 

test   is supposed known. 

Evidently we could obtain, by the classical method, the locally most 

powerful and locally most powerful unbiased tests if one of the parameters, or 

a relation between them, is fixed; but we would obtain analogous difficulties 

and, finally, resort to tests based on maximum likelihood estimation with 

optimal asymptotic behaviour. They can be let as exercises. 

Evidently we could also use other estimators such as the ones described 

previously, but their efficiencies would in general be low. 

5.7 Point and Interval Prediction 

Let us begin by considering the point prediction of the maximum of (the next) 

  observations from a sample of  . The likelihood of the sample             

and the (future) maximum      is evidently 

            
 

  
      ̅         ∑          

 

 

  
 

 
                        

We could seek, following Tiago de Oliveira (1966) and (1968), the 

quasi-linearly invariant predictor                (e.g., the predictor such that 
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                         such that           
   is minimum. 

The result is not manageable, even using computers, as can be seen from the 

expression 

      
∫          ̅   

 ∑        
   

            ∑        
  

     

    
  

  

 
   

∫     
     ̅   

 ∑        
   

 
  

 
   

. 

As the                          ̂   ̂  is asymptotically optimal 

it is then natural to use, as point predictor, the function        ̂     ̂ which 

is quasi-linearly invariant because  ̂              ̂           ̂    

                

Using the mean-square error as a measure of distance between the 

prediction and the (to be) observed value of       we have 

        (  ( ̂     ̂)
 
) 

  (      )
 
    ̂     ̂          

   
  

 
      ̂      ̂                   

The mean-square error of the point predictor          ̂     ̂   is 

asymptotically a minimum for            and its variance is that of the 

quantile             i.e., asymptotically. 

  

 
   [  

 

  
         ]

  

 
  

The determination of prediction regions, also dealt with in the same 

papers, leads to the same difficulties in computing integrals. Thus we will 

once more use the maximum likelihood estimators. 

Let us now seek, then, one-sided and two-sided prediction intervals 

based on   ̂   ̂   , for a prediction level   , in general close to  . 

The most important one-sided prediction interval for the prediction 

level  , for    is    ̂     ̂  with   such that 

        ̂     ̂    

which as  
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                    ⁄          ⁄         

 is reduced to 

    
 ̂     ̂   

 
            

Evidently the first approximation to   is from the relation     

                          Consider now the approximation      

      
 

√ 
              Let us put √  

 ̂  

 
    √   

 ̂

 
        Then we 

get 

    
 ̂     ̂   

 
                   

       

√ 
      

Developing   through          
 

√ 
            we get the equation, by 

easy algebra, 

                        (    ⁄  )     

and as                       we get      Thus            

          or             with a linear error of the order of         . 

The prediction level differs from   in terms of                     which 

shows that             gives a good approximation to the quantile with 

an error in the prediction level of the order          Consequently: 

The one-sided prediction interval with prediction level    , to the order 

of         is,  ̂              ̂               

A subsequent summand     of order     could be obtained in the same way 

supposing now that √          and √           we have then  

  
      

 
   

 

  
                and so the second order 

approximation to    , with a linear error of the order of        , is  

          
      

  
    

 

  
                

and the prediction level differs from   by a quantity of          . 

The other one-sided interval can be dealt with in the same way. 
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Let us sketch two-sided prediction intervals with prediction level   and 

asymptotically shortest average length. If        are quantities such that 

     ( ̂      ̂     ̂      ̂)    

and       is minimum, they are given by the equations 

                 

It is then easy to show that if      and are such that 

    ( ̂     ̂     ̂     ̂)    

we shall have                        apart from terms of order       

with the length                  which is asymptotically shortest on 

average. 

Other estimators of       can be considered as well to form predictors. 

5.8 Miscellaneous Results 

5.8.1. Discrimination 

Consider that we have two populations whose distribution functions are 

           and                where the scale parameter is the same. 

Consider that we want to decide if some observation   belongs to the 

first or the second population (i.e., has the location parameter         . 

Supposing        and   to be known, we are in a situation analogous to usual 

Neyman-Pearson theory for testing hypothesis. Denoting by              

the acceptance regions for           the misclassification errors of the test are 

            ∫      
    

 
  

and                  ∫       
   

 
    ∫      

   

 
   

To be fair we stipulate these misclassification errors to be equal, i.e., 

∫  [    
   

 
      

    

 
 ]    

and minimize the (equal) misclassification errors ∫      
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This test, by the Neyman-Pearson theorem, has the acceptance region 

for  ,  

 
 
     

    
 

 

 
 
     

   
 

  
 
 
     

    
 

 
   

or                                              

                              

Suppose that         Then the acceptance region   is given by 

              where    is defined by 

   
   

 
     

    

 
    

and the misclassification error is given by 

∫      
    

 
      

    

 
   

if      the changes are obvious. 

As        and   are not known it is natural to estimate them and 

substitute in the previous relations. 

For a sample of             of the first population and of  (  
        

 ) 

of the second one, the maximum likelihood estimators are  

 ̂     ̂    
∑        ̂ 

 

 
        ̂    

∑         ̂  
 

  
 

and  

 ̂  
 

    
  ̅  

∑     
      

 

∑        
 

  
  

    
  ̅  

∑      
       ̂  

 

∑         ̂  
 

   

Thus we substitute            by their estimators in the fair test above, 

taking for   the discrimination region corresponding to the largest estimated 

location parameter. 

For more details and the analysis of the asymptotic behaviour 

(consistency) see Tiago de Oliveira (1973). 
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5.8.2. Tolerance intervals  

The concept of tolerance intervals was introduced by Wilks (1941) as a 

procedure for the prediction of the values of a population. In Themido (1985), 

parameter-free tolerance intervals for the Gumbel distribution are obtained 

and a comparison, for large samples, is made with the distribution-free 

tolerance intervals proposed by Wilks, a comparison based on the respective 

expected lengths. 

Let             be an i.i.d. sample of one-dimensional continuous 

random variables, and                          , be statistics such that 

                 The random interval [     ] is a       -tolerance interval 

if 

           [       ]        

  being the tolerance level of the interval; if, instead of this relation, we have 

      [       ]     

the interval  [     ] is an  -average tolerance interval. 

In the first case for given                   we seek tolerance 

limits            based on the sample, such that [     ]  contains, with 

probability   at least         of the populations or such that we have a 

confidence of          that the probability that a future observation will lie 

between           is at least   ; for the second case we must find           

such that the average of mean coverage of the interval is           

If we have                we obtain one-sided tolerance 

intervals. 

Regarding the distribution function of the    we should consider two 

situations: 

 the non-parametric case where the functional form of the distribution of 

the    is unknown, apart from the fact that it is (absolutely) continuous; 

 the parametric case where the functional form of the distribution of the 

   is known and only the values of a finite number of parameters of the 

distribution are unknown. 
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For the determination of tolerance intervals for one-dimensional 

distributions in the non-parametric case, an exact solution, using order 

statistics, was given by Wilks (1941). 

In the parametric case it is natural to expect that tolerance limits better 

than those of Wilks can be obtained. 

For the Gumbel distribution                          

           let us use as tolerance limits the maximum likelihood 

estimators of the quantiles of probabilities                   

               ̂      ̂                        real coefficients 

independent of   , a choice made because  ̂          ̂     are optimum 

estimators of    and   in terms of asymptotic efficiency. Recall that  ̂     ̂  

are the unique quasi-linearly invariant functions of   ̂      ̂. 

The (random) proportion of the Gumbel distribution covered by the 

tolerance interval [     ] is 

        
 ̂     

 
   

 ̂     

 
     

 ̂     

 
   

  ̂    

 
   

    ̂         ̂         ̂        ̂       

where             is the corresponding random sample from the reduced 

Gumbel distribution. This follows from the invariance of maximum likelihood 

estimators and from the form of the quasi-linearly invariant tolerance limits 

considered. Thus, the probability  ̂         [     ]  is parameter-free and the 

     -tolerance interval can be written as        ̂          Using the  -

method Tiago de Oliveira (1982) we can show that the asymptotic distribution 

of  ̂     is normal, as usual, with mean value             and variance 

        Even if we take             √          , the    can be 

computed to give a better approximation; details of an analogous approach 

can be found in Chapter 8. 

For each pair                there is an infinity of pairs         

such that the tolerance limits    and    define       -tolerance interval for 

the Gumbel distribution. We can determine the minimum length parameter-

free      -tolerance interval. 
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Also, in terms of the  -average tolerance interval,        we can 

seek the one with minimum length. 

The parameter-free      -tolerance limits and the parameter-free  -

average tolerance limits, being estimators of quantiles for the Gumbel 

distribution converge in probability, as       to the quantiles which are 

the end-points of the shortest quantile intervals with probability         

respectively. Tolerance intervals thus correspond to the intervals above but 

with random end-points. 

We can also deal with one-sided parameter-free      -tolerance 

interval; in this case we have only one coefficient,            for lower or 

upper intervals respectively. 

In the comparison for large samples, between distribution-free and 

parameter-free two-sided tolerance interval for the Gumbel distribution, with 

respect to the mean length criterion, the parameter-free tolerance interval 

using the information about the distribution are, as expected, better than 

distribution-free tolerance interval. 

For the proofs, a tabulation of          and other details, see Themido 

(1985). 

5.8.3. Multisample analysis  

Consider two samples                    
      

    for which we assume that 

they have a Gumbel distribution with parameters          and the same 

parameter  . We want to test if      . This is the first step of Multisample 

Analysis for Extremes, analogous to Analysis of Variance, but practically 

unsolved for extremes, and the only case that will be dealt with here. 

Analogously to what happened to discrimination we have 

 ̂    ̂    
∑      ̂⁄ 

 

 
  ̂    ̂    

∑        ̂  
 

  
 

and 

 ̂  
 

    
   ̅  

∑     
    ̂⁄ 

 

∑      ̂⁄ 
 

  
  

    
   ̅  

∑      
      ̂  

 

∑        ̂  
 

  

if   is supposed different from    and 
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 ̂̂    ̂̂     
∑       ̂̂  ∑        ̂̂  

 
 
 

    
 

 ̂̂  
   ̅      ̅ 
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     ̂̂  ∑      

      ̂̂ 
 

 
 

∑       ̂̂  ∑        ̂̂  
 

 
 

 

if we suppose        

The likelihood ratio criterion leads to the test statistic 

     
   
   

[                     ] 

   
      

 [                     ]
  

            
 ̂̂

 ̂
 

   ̅  ̂̂       ̅   ̂̂ 

 ̂̂
    

   ̅  ̂       ̅   ̂  

 ̂
    

which is asymptotically       with one degree of freedom in the hypothesis 

tested. 

5.8.4. Overpassing probability of a level  

Let   be a level and suppose that   has a Gumbel distribution           . 

Then                                      . We will take as 

estimator of           using the estimators   ̂   ̂            

 ̂      ( | ̂   ̂) 

and by the use  -method we have that √    ̂               has the 

asymptotically normal distribution of the linearized expression. 

√  [   ̂    
     

  
   ̂    

     

  
]   

 √                         [ 
 ̂   

 
 

   

 
  
 ̂   

 
]  

Its asymptotic mean value is zero and the variance is 

                                      
 

  
      

    

 
       

Also  √  
 ̂          

√        
  is asymptotically standard normal even with 

          substituted by  ̂         ̂   ̂   
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Then,    denoting as usual the solution of         ,  we have 

     √  
 ̂         

√ ̂   
                               and thus: 

The one-sided asymptotic confidence interval for      with significance level 

  is 

        ̂    
   

√ 
√ ̂     

5.8.5. A worked example  

Sneyers (1977) gives the following      maximal yearly precipitations 

from 1938 to 1972 at Uccle, in 1 mm units, for the durations of 24 h, 60 min, 

10 min and 1 min. 

Experience says Sneyers - and the plotting confirms it - shows that for small 

durations the maximal precipitation follows a Gumbel distribution but for 

large durations it follows a Fréchet distribution. 

The ML method applied to 1 min duration data gives  ̂           

and  ̂         , close to       and       or       and       obtained by 

Sneyers by other methods. 

From the values of   ̂   ̂  we can solve other decision problems such as 

the ones discussed before. 

To test the goodness of fit of a known (or fixed) distribution      we 

can use the Kolmogoroff-Smirnov test statistic 

                     
 

   
 

            
    

 

 
         

    
 

 
       

where                 denotes the sample distribution function    
     

  

     
  , the order statistics of the i.i.d. sample and is taken       

        

We accept     , at the significance levels     and    , according to 

√              √           , rejecting otherwise. When we assume 

model         , we estimate   by  ̂  (say) and instead of the unknown 

(parameterized)        we compute  ̂       
 

              ̂   and act in 
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the same way as before. Although the procedure is not completely justified, it 

can be expected to be sufficiently approximate when   is large. 

Table 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 24  h 1 min 10 min 60 min 

1938 33.8 2.5 6.5 14.0 

1939 27.7 1.0 8.5 12.8 

1940 60.0 0.5 5.0 12.9 

1941 24.0 0.9 8.4 11.9 

1942 72.3 1.5 13.2 20.6 

1943 50.7 4.4 11.9 29.1 

1944 18.7 1.0 3.8 6.2 

1945 41.2 3.0 13.0 21.1 

1946 26.6 3.3 11.1 11.2 

1947 27.2 2.0 13.0 18.0 

1948 23.8 1.8 6.5 15.6 

1949 19.8 1.0 5.7 8.7 

1950 34.3 2.0 13.3 23.8 

1951 28.2 4.0 12.2 12.2 

1952 51.1 2.0 8.4 29.0 

1953 37.5 1.0 5.0 9.9 

1954 34.3 2.0 6.9 12.5 

1955 22.2 1.6 6.2 9.6 

1956 35.6 3.0 8.5 18.8 

1957 34.2 1.6 9.8 12.0 

1958 24.3 2.0 5.5 12.0 

1959 20.3 1.2 9.8 11.6 

1960 48.0 2.0 9.5 15.3 

1961 32.4 1.5 11.5 19.2 

1962 59.6 2.9 12.7 42.8 

1963 60.4 3.7 9.0 13.0 

1964 27.0 2.7 13.0 15.7 

1965 45.8 2.0 12.2 15.4 

1966 39.8 2.9 9.5 14.3 

1967 21.6 3.0 11.9 13.1 

1968 19.7 2.1 8.3 14.9 

1969 54.4 2.3 15.3 25.8 

1970 29.1 2.2 13.8 17.1 

1971 41.6 1.6 7.0 21.2 

1972 26.0 2.8 8.7 16.3 
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In our case, assuming the Gumbel model, with the values of   ̂   ̂   

above, we have  

 ̂       
 

               ̂   ̂            

and as      we have √    ̂         , accepting thus the Gumbel model. 
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