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Part 2 

Statistics for Univariate Extremes 

Chapter 7 

Statistical Decision for Weibull Distribution 

(For Minima) 

J.  Tiago de Oliveira 
Academia das Ciências de Lisboa (Lisbon Academy of Sciences), Lisbon, Portugal. 
 

Abstract  

The Weibull distribution for minima is explained. Weibull 

random variable (for minima) has a finite location 

parameter. The Weibull distribution deals with modeling of 

failure and helps to determine ‗time-to-failure‘. 

Characteristics are presented from definition of distribution 

function. Statistical decision for the 3-parameters case, 

estimation, testing and point prediction are discussed. 

Prediction difficulties are depending on the interplay of the 

location and shape parameter of the distribution.    
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7.1 Introduction 

The Weibull distribution for minima is one of the asymptotic distributions for 

minima when the initial distribution has a left-end point (recall that the other 

possible asymptotic distribution is the Gumbel distribution for minima). Thus 

any Weibull random variable (for minima) has a finite location parameter   (a 

threshold) and it takes the form 

  ( |   )    ((   )  ⁄ )        * (
   

 
) +   for         

  ( |   )    ((   )  )                           for          
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For     , we have the exponential distribution and for     we have 

the Rayleigh distribution important in delay-times and Oceanography, 

respectively. Evidently,   ( )      (  ). 

It is immediate that   ((   )  )  has the standard exponential 

distribution. Also if       is known (it can be taken as zero, for 

convenience, by subtraction)         (    ) has a Gumbel distribution 

for maxima with the location and dispersion parameters         and    . 

Thus the theory for Gumbel distribution can be applied and the maximum 

likelihood estimators are  (       ) 

 

 ̂
 ∑       

 

 

 
∑    

 ̂        
 
 

∑    
 ̂ 

 

   

 ̂  
 

 
 ∑    

 ̂

 

 

  

The solution of the first equation needs an initial seed which can be 

obtained either using the fact that *        +  has a general Gumbel 

distribution where      is the dispersion parameter among other ways. 

The random pair ( ̂  ̂)  has a binormal asymptotic behaviour with 

mean values (   ) , variances .  
 

  
(   ) /         ⁄      ⁄    , 

covariance 
 (   ) 

    
, and correlation coefficient   (  

  

 (   ) 
)   ⁄  

      . 

The confidence intervals; tests, estimators of quantiles, predictors, etc., 

can be dealt with by the usual techniques, as done before in previous chapters. 

Weibull (1939) gave an empirical derivation of this distribution in an 

analysis of dynamic breaking strengths by requiring only that is should meet 

certain practical criteria. That paper and other related papers by Weibull 

dealing with the modelling of failure (or survival) data seem to have found a 

large audience chiefly among those concerned with reliability analysis. The 

use of the Weibull distribution as a model for ―time-to-failure‖ has thus been 

widespread. It arises naturally also in the analysis of droughts, in 

Oceanography, in Survival Analysis; see, for instance, Gumbel (1954). 
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The Weibull distribution for maxima has been used to model maximum 

temperatures, maximum wind speeds and maximum earthquake magnitudes; 

see Jenkinson (1955) and Yegulalp and Kuo (1974). 

Other methods of estimation, as the ones given for the Gumbel 

distribution, can be used by the reduction to             . 

Recall that if   has a Fréchet distribution with dispersion and shape 

parameters   and   , respectively, then     has a two-parameter Weibull 

distribution with shape parameter   and dispersion parameter    . Thus, 

when data have not been censored, estimation procedures that have been 

derived for the two-parameter Fréchet distribution can be used to estimate 

parameters of the Weibull distribution by simply taking reciprocals of the 

observed values or directly when appropriate. 

Methods applicable for Weibull censoring on the right will be 

appropriate for censoring Fréchet data sets on the left, i.e., the smallest data 

values, etc. 

For these censorings, and for obtaining best invariant estimators of 

        and     among those which are linear in the Gumbel order statistics 

(logarithms of the Weibull order statistics in reverse order), weights have been 

calculated and tabulated by Laue (1974) for    ( )      ( ) . For zero 

censoring they are equal to the weights calculated and tabulated by Mann 

(1967) for best linearly invariant estimation from the smallest       Gumbel 

order statistics. 

From best linearly invariant estimators of         and     one can 

obtain estimators of the location and dispersion parameters and best linearly 

estimators of any quantile of the distribution. Invariant estimators and 

maximum likelihood equations yield estimators of      and        that tend 

to be very nearly equal in value, and the constants in the variance-covariance 

matrix of the best linearly unbiased estimators can be used effectively to 

remove the bias from maximum likelihood estimators if approximate unbiased 

estimators are desired. All these types of estimators are asymptotically 

unbiased, asymptotically efficient and asymptotically normal. 

7.2 Characteristics of the Weibull distribution 

From the definition of the distribution function 
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  ( |   )      (  |   ) 

we can get, when they exist, the usual coefficients. We will obtain them for 

the reduced random variable   (   )  , the transfer of the general case 

being immediate. 

The computation of   and   , also depending on  , is left as an 

exercise. 

The graphs of probability densities    ( )     
       (    )(  

 ) for different values of     are given in Figure 7.1. 

 

Figure 7.1 Reduced Weibull densities (for minima). 

Evidently as   ( )      (  )  the density    ( )  is the mirror 

image of     ( ). 

We have 

     ( 
 )   (    ⁄ ) 

and so the mean value is    (    ⁄ ), the variance     (    ⁄ )  

  (     )  the corresponding values for   being obvious. 

Also we have the mode      if     ,    (     )    if     , 

the median  ̃  (     )   and the  -quantil 

   (     (   ))
                   . 
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Note that  (   ), with   having the distribution function   ( ), has 

mean value  (   (    ⁄ ))    (
  

 
   )     (   ) and variance 

  ( (     ))    (     )   
  

 
  (   )  which suggests that 

 (   ) converges to a Gumbel distribution of maxima when     and so, 

for large  , we can use it as an approximation. The exact proof is left as an 

exercise. 

The moment generating function of  does not have an explicit 

expression but that of        (which is a Gumbel random variable of minima) 

is 

 (      )   (  )   (     ). 

The computation of    and   , also depending on  , is left as an 

exercise. 

7.3 Estimation and testing 

Some difficulties can appear for the Weibull distribution depending on the 

interplay of the location ( ) and shape parameter  ( ). 

If      is known, as said before, there is no problem with its 

reduction to the Gumbel distribution for maxima. 

Let us consider first the situation when   is known and (   ) unknown 

— a real location-dispersion case. It is very easy to verify that if      ̂  

       (       )  and any positive statistic   (       )    are 

maximum likelihood estimators of (   )! 

For     (exponential distribution) we have  ̂         (       ) 

and  ̂   ̅   ̂, but owing to the influence of the minimum  ̂ the asymptotic 

behaviour of ( ̂  ̂) is not binormal, because  ̂ also has the same exponential 

distribution with location parameter   and dispersion parameter    . Note, 

also, that   (  ̂   )   . 

It can remarked that the minimum-variance unbiased estimators of   

and   are 

   (       ̅) (   )⁄   ̂   ̂ (   ) 

and 
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    ( ̅     ) (   )⁄     ̂ (   )  

See Epstein and Sobel (1954) for details. 

For       the maximum likelihood estimators exist but the 

Cramér-Rao bound, using the second derivatives does not. Other bounds, 

valid throughout the range of  , were found in Tiago de Oliveira and Littauer 

(1976). Are smaller than the Cramér-Rao bound in the range    , as shown 

in the paper by Tiago de Oliveira (1968). 

In prediction results we will develop these bounds. 

For      the maximum likelihood estimator  ̂  is not 

asymptotically normal and whether or not it is efficient is an open question; 

see Woodroofe (1974). For known    , Tiago de Oliveira (1983) has 

shown that     ∑ (      
 
   )    has all the asymptotic properties of the 

maximum likelihood estimator of  . If   is known but   and   are unknown, 

the tables of Harter and Dubey (1967) can be used to test hypotheses 

concerning the mean value and variance. 

The case where     is simple and regular; see Cramér (1946). The 

maximum likelihood estimators of (   ) for     (  ) known, are given 

by the equations 

∑ (    ̂)
     

 

∑ (    ̂)
   

 

 
    

    
 ∑

 

    ̂

 

 

 

 ̂  (
 

 
 ∑(    ̂))

    

 

 

  

The random pair ( ̂  ̂)  is asymptotically normal with mean values  

(   ) , variances   
        (    )

   (      ) 
    , 

covariance    (    )  (      ) 
    , and correlation coefficient 

     (      ) √ (      ), where   denotes 

  
  (    )

 , (     ⁄ )    (      )-. 

From these results the usual tests and confidence intervals can be 

made. The estimator  ̂     ̂  of the  -quantile       is asymptotically 

normal with mean value         and variance 
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((   (    )  (     ⁄ )  )
  (    )

 , (     ⁄ )  

  (     ⁄ )-   ) 
      

 (
(   (    )  (     ⁄ )  )

 

 
 
  
 

  
 )  

     

 (
(   (     ⁄ )  )

 

(    )
 ( (     ⁄ )    (     ⁄ ))

 
  
 

  
 ) 

     

For prediction, the mean value of the minimum of the next   

observations is     (     ⁄ )     ⁄   . As before we use as predictor 

 ̂   (     ⁄ )     ⁄   ̂ and the mean square error of the predictor is, as 

we can take      (     ⁄ ), 

( (     ⁄ )    (   (  ))  
   

(
   (     ⁄ )  (   (  ))

 

(    )
  ( (     ⁄ )   (     ⁄ ))

 
  (     ⁄ )

  
 )    . 

Let us now consider the 3-parameter Weibull distribution. The state of 

affairs in this case is very awkward, chiefly because we have to estimate   

with a global behaviour changing according to its real value; see Dubey 

(1967) and (1967‘) and Mann (1968) to get the first feelings of the difficulties 

of the problem, chiefly connected with the non-existence of maximum 

likelihood estimators for all values of   . Cohen and Whitten (1982) advise 

that one should attempt to obtain maximum likelihood estimators for the 

three-parameter Weibull distribution unless there is reason to expect       . 

With all these restrictions, let us write the maximum likelihood 

equations. From the likelihood of the sample (       )      

 (     |  )                    if           (       )    

 (     |  )  
  

   
 
 
 
 
(    )

      * ∑ ( 
    

 
 )  

 +        (       )     

we get 

 ̂  ̂  
 

 
 ∑(    ̂)

 ̂
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 ̂   
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 ̂ 
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 ∑   (    ̂)  

 

 

∑(    ̂)
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    (    ̂) ∑(    ̂)
 ̂

 

 

  

For this system we have to solve for ( ̂  ̂), as a first step, the last two 

equations and then compute  ̂. If     the system is asymptotically trinormal 

and the previous techniques applied to the Fréchet distribution can be used. 

Those equations can be compared and are similar, to those for the Fréchet 

distribution of maxima, as could be expected. Also it can be shown that: 

The random triple ( ̂  ̂  ̂)  is asymptotically trinormal with mean values 

( ̂  ̂  ̂) if     and variance-covariance matrix analogous to the one for 

Fréchet distribution. 

The real important situations are considered below, particularly in the 

subsection ―The maximum likelihood estimator when      ‖. 

The usual techniques of confidence interval estimation and hypothesis 

testing can be applied as before. Prediction will be discussed in the next 

section. 

Lemon (1975) modified the likelihood equations so that one need 

iteratively solve only two equations for estimates of    and   , which together 

then specify an estimate of  . Cohen and Whitten (1982) suggest other 

modifications to the maximum likelihood methods which involve 

simplification of one of the equations. 

For estimation of the three Weibull parameters, the method of moments 

seems to work well, in general, as estimators can always be obtained. The 

tables of Dubey (1967) applying to the two-parameter distribution and the 

Monte Carlo results of Cohen and Whitten (1982) applying to the three-

parameter distribution, indicate that the moment estimators are very efficient 

for       and become progressively less efficient as   converges towards 2 

or towards       Cohen and Whitten (1982) provide a table which facilitates 

estimation of     from the distribution skewness coefficient    . These authors 

also give several modifications to the moment equations which simplify 

estimation of all three parameters. 
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Another iterative procedure for estimating   is one by Mann and Fertig 

(1973). If     is not too large, this method also provides a lower confidence 

bound for  . Also we can use the proposed statistic to test     vs.     , 

which is very important in fatigue failure research. The basic statistic for this 

test is a ratio of selected sums of differences of successive ordered logarithms 

of sample observations, each difference being divided by its expected value. 

To obtain a point estimate of   (which is median unbiased) or a lower 

confidence bound, the initial guess of   must be subtracted from each 

observation and iterated until the modified statistic is numerically equal to a 

percentile of the statistics distribution. The method has two advantages: the 

test statistic, under     , has a Beta distribution and it is appropriate for use 

with censored data. The later advantage can also be claimed for a similar 

statistic by Weissman (1978) and for certain linear estimators of         and 

    that can be applied to the ordered logarithms of the observed data after an 

estimate of    is subtracted from each of the original values. 

Wyckoff, Bain and Engelhardt (1980) suggest the use of a simplified 

linear estimator of     , after having substituted    by a simple estimator, as 

an approximation of the best linear unbiased estimator. This seems to yield 

appropriate and quite efficient estimates for    , and ultimately for      , if  

      when there is no censoring (or if   is somewhat less than 3.0 when 

there is censoring). For larger values of  , estimates of      obtained by this 

method have a substantial negative bias unless sample size is extremely large. 

Besides the linear estimators of        and    , there are other simple 

estimators of the Weibull parameters that are appropriate for use under certain 

conditions. For    , a special case suggested by Zanakis (1979) of the 

estimator of    previously proposed by Dubey (1966), namely,    (  
     

  

  
  ) (  

    
      

 ), has relatively small bias and mean-square error. For 

   , a statistic investigated by Kappenam (1981) has smaller bias and 

mean-square error than the last one for estimating  , but is also considerably 

more difficult to compute, involving a weighted average of all the order 

statistics. 

Zanakis and Mann (1982) compared two simple estimators of   based 

on a few order statistics: 

  
      ,(  

    
 ) (  

    
 ⁄ )-       
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and       
      ,(  

    ) (  
    )-       

with                    defined appropriately and    given 

above. 

They found both estimators to be good for small values of  , but having 

more negative bias than estimators based on the procedures prescribed by 

Wyckoff, Bain and Engelhardt (1980). The simple estimators are useful for 

first guesses in maximum-likelihood estimation and in other situations in 

which quick results are necessary. 

7.4 Point prediction 

As before, the mean-square point predictor of the minimum of the next   

observations is evidently the estimator of the mean value of                       

     (         )  The distribution of     is, as seen before,   (
     

       
) 

if the distributions of    , as well as those of    , are   ((   )  ). The mean 

value of   is 

 ( )           (     )    

and thus a point predictor of    can be obtained substituting (     ) by their 

estimators. But difficulties exist when   is not known and     may be    . If 

     is known and      (practically speaking       ), there are no 

difficulties with the maximum likelihood estimation; likewise if (     ) are 

all unknown but it is known that    . The general theory used before for 

the Fréchet distribution can also be applied here. 

If      is known then      (    ) has a Gumbel distribution with 

location and dispersion parameters         and     and estimation can be 

dealt with by the methods of Chapter 5. 

The theory of best quasi-linear prediction when      leads to an 

unmanageable formula for the predictor, following Tiago de Oliveira (1966) 

as we will recall briefly. 

Later we will make considerable use of Tiago de Oliveira and Littauer 

(1976). 

The likelihood of the observed sample is  

 ̅  (   |  )      if        (  )    
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 ̅  (   |  )  
 
 
 
 *
 

 
     (

    

 
)+       if    (  )    

and the likelihood of the sample and the future minimum   from   

observations is 

   (   |    )   ̅  (   |       )
 

       
     (

   

       
) 

where   ( ) was defined above. 

According to the paper previously cited, the mean-square predictor has 

the expression 

  (  )  
∫        
  

 ∫     ̅(               ),  (              )  -
  

  

∫      
  

 ∫     ̅(               )
  

  

  

where  (         )  denotes the likelihood of the first sample and the 

minimum of the second sample,  ̅(       )  ∫       (       
  

  
  )  is 

the marginal likelihood of the sample and 

  (  )  ∫         (         )
  

  

  ̅(       ) 

is the conditional mean. As it is irrelevant, from the expression of    (  ), we 

can always suppose     and    . This predictor was shown in that paper 

to be quasi-linear, i.e.,   (      )        (  ), for every   and  (  ). 

Note that, in our case, we have 

  (  )        ∫                
 (       )

  

  
  (     ⁄ )     ⁄⁄  

       
        

and   ̅(  )     (  ). 

As     ( )            , the integration takes place in the region 

        , that is,       (  ) where  (  )      (       ). 

The predictor can be written as 
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     (  )  

∫        
  

 
 ∫    (       )

 
 

   
    (      )

  

 (  )

∫      
  

 
 ∫    

 
 

   
    (      )

  

 (  )

   

Putting        (  ) we get 

 
    
(  )   (  )  

∫        
  

 
 ∫    ( 

    
  )

 
 
   

    (    (    (  )))
  

 

∫      
  

 
 ∫     

 
 
   

    (    (    (  )))
  

 

    

It is evident that computation facilities will not be useful at all, as the 

expression above implies the computation of the predictor      (  ) for any   

(sample size) and for any (practically) observable sample mean, except for 

special cases. For example, in the case of the exponential distribution 

(    ) , we have 

   ( )                 if         

                            if         

        , and thus we obtain 

    (  )   (  )  (
 

 
 
 

 
),  ̅   (  )-  

7.5 Lower bounds for the mean-square error  

As the maximum likelihood estimators are not regular or do not exist if    , 

it is natural to search for a quasi-linear predictor and thus to try to obtain a 

lower bound for the mean-square error of any quasi-linear statistic  (  ) for  

          . 

The mean-square error of a quasi-linear statistic  (  ) is 

 ( (  )   )
      ( (  )   )

  

where           and         (i.e.,    and   are the reduced values of 

the observations). From now on we will deal, thus, with reduced observations 

(       ) because we are going to evaluate efficiencies and the factor    

cancels out. 
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The values of   ( (  )   )
  can be split simply by putting  (  )    

( (  )       )  (       ) and so, by independence between the first and 

second sample, we have 

 ( (  )   )
   ( (  )       )

   (       )
  

     
 ( )    

 (  )                        (  )                             

Thus we will study      
 ( ) . It was shown in Tiago de Oliveira (1968), 

using the Schwarz inequality conveniently, that, in the general case, if we 

denote by  (   )(            )  

∫  
  

  

 ∫   

  

  

(               )  ̅(       )         

and by   (   ) 

∫  
  

  

  ∫
 ̅ (       )

    ̅(               )

  

  

          

then 

      
   

(   (   )   (   ) ) 

  (   )       
 

    

is a lower bound for the mean-square error      
 ( )   ( (  )    (  ))

  of 

a quasi-linear statistic  (  )(            ) In the expression of  

  (   ) in the integrals the indeterminate ratio  
 

 
  is taken to be equal to zero. 

  is indeterminate for         In our case, owing to 

independence, we have 

 (   )          and     (   )     
 (   ) 

where 

   (   )  ∫
    ( )

 

      (    )

  

  

    

and thus we have 

      
   

(               )
 

   
 (   )       

 . 
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As    is almost impossible to obtain, we will put     above and 

compute 

 ̅     
 
 

     
 (   ) 

   
 (   )        

       

and as 

   (   )    , 
  (     )-   for             

we get the (smaller) lower bound 

 ̅  
     
 

      
    

     
 

    
  

     
 

    
       

 

and an (under) evaluation of efficiency is 

    
 ̅ 

    
 ( )

 
     
 

  
      ⁄         

 ( )
   

For       ̅
      

 ( )  when  (  )   (  )  (
 

 
 
 

 
) , ̅   (  )-  is 

the best predictor for the exponential distribution, already given. 

In case of regularity, as happens for     , we can obtain bounds 

analogous to the Cramér-Rao bounds for estimation. In the last paper referred 

to it was shown, for the case of independence with the density  ( ) for the 

(reduced)    and the mean    for    , to have the expression 

    
    

              

 (        
    )

 

with 

   ∫   
  

  

 
  ( ) 

 ( )
       

Putting  ( )      ( )  and            we get, as 

   ,(    )
   (      )-  (  

   

  
)   



Statistical Theory of Extremes, 11-44, 2017 (Online Edition).                  J. Tiago de Oliveira  

144 

 

    
  
      (    )  (     ⁄ )       (    )

   (     ⁄ )      
 

    
 (    )

  , (     ⁄ )    (     ⁄ )-
   

Asymptotically we have  ̅      and so the (under-) evaluation of  the 

efficiency is to be taken as 

        
 ( )   

In fact, as the maximum likelihood estimators are the best when regular 

(    ) , we are going to obtain a set of simple predictors, chiefly for  

    , such that they have reasonably good efficiency for some interval in 

,   -. 

7.6 Some predictors for the shape parameter       

It is desirable to explore different predictors for different ranges of    because 

of computational difficulties. Let us begin by examining the region       , 

with a suggestion from the result for the exponential (    )   

The simple predictor for the exponential distribution suggests the use of 

the statistic 

 (  )   (  ) ( ̅   (  )) 

as predictor, where  (  ) is to be determined so as to minimize the mean-

square error, which for reduced values is 

    
   ( (  )   (  ) ( ̅   (  ))       )

    

This predictor is suggested also by the fact that the lower limit    has 

 (  ) as a sufficient estimator (but an over-estimator). 

The sample average is a quasi-linear statistic converging to         

   (     ⁄ ) , with variance     (  )    with  

 (  )  , (     ⁄ )    (     ⁄ )-  

 (  ) has the mean value            (     ⁄ )      , its variance being 

    (  )  
      the correlation coefficient        ( ̅  (  ))  converges to 

zero; see Tiago de Oliveira (1962) and Rosengard (1966). 

Thus, the mean-square error     
  for reduced observations as a 

function of  , can be written as  , (  )   ( ̅   (  ))       -
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 , (  )       -
     [( (  )       )( ̅   (  ))]   , ̅   (  )-

     

Using the decomposition  (  )         (  )                     and  

 ̅   (  )   ̅                           (  ) , we have 

 ,( (  )       )
 -   

 (  )

    ⁄
 (           )

    

 [( (  )       ) ( ̅   (  ))]         
 (  )

    ⁄    ⁄
 
 (  )

    ⁄
   

(           ) (           )  

 ,( ̅   (  ))
 -  

 (  )

 
 (           )

  
 (  )

     
        

 (  )

         
    

The minimum of the quadratic is attained at some value whose limit is 

  (  )            ⁄          

thus the predictor is   (  )   
      ( ̅   (  )). The asymptotic values of the 

mean-square error are then: 

    
  

     
   (  )

     
    

 
 (  )

       
                 if       , 

    
  

    √          

   
                           if          

    
  

  (        ) (   
     ) 

     
                if         

Consequently, the asymptotic efficiency is, since   ̅  
     
 

    
    

    (  )  
   (       ⁄ )

  
   (  )

                                       

    (  )  
 

  (     √          )
                          

    (  )                                                if        

Zero efficiency for       results from the slow convergence of  (  ) 

to the parameter  , an effect that in this region overcomes the more rapid 

convergence of the average  ̅ . The efficiency for       is independent of 

 . A short table of the efficiency for the above predictor is, for     . 
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    (  )              
 

The predictor for          is thus reasonably efficient. Outside 

this range for the shape parameter, another predictor must be found. 

Consider now the usage of a sample quantile  (  ) and the minimum 

value  (  ). It is apparent (by the argument given above), that, since the 

variance of a quantile is of order     , a linear combination 

 (  )   (  ) ( (  )   (  )) 

may be efficient only in the region      ; it will be useful in the region 

         For known       , let us denote by   the quantile of probability  

     ( ). It is well known (Cramér, 1946) that the sample quantile  (  ) 

for probability   , with reduced observations, is asymptotically normal with 

expected value  and asymptotic variance of the order of  (   ) 

    
  

 
( )   As 

   ( )     
           

the asymptotic variance is of the order of 

 (   )   

    
    (    ) 

   

The mean-square error, for reduced values, is 

 ,( (  )   (  )( (  )   (  ))       )
 -   ,( (  )       )

 -    

  ,( (  )       )( (  )   (  ))-  (  )   ,( (  )   (  ))
 -   (  )  

with 

 ,( (  )       )
  -  

 (  )

    ⁄
 (           )

    

 [( (  )       )( (  )   (  ))]       
        

 (  )
  ⁄

    ⁄
 
 (  )

    ⁄
 

 (           ) (           )  

 ,( (  )   (  ))
 -       

  (           )
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 (  )

    ⁄
       

         
 (  )

  ⁄

    ⁄
  

where we have made a decomposition analogous to the previous one and 

where            
 , and      

  denote the asymptotic mean value and the 

variance of the sample quantile and the correlation coefficient between the 

sample quantile and the minimum. As might be expected,      
    

(Rosengard , 1966)*. 

Denoting by      the limiting value of        , we see that the limiting 

value of   (  ) that minimizes the mean-square error is 

 (  )            

and the asymptotic mean-square error for      is, for reduced values, 

    
   

     
  (  

    )

    
        

   

For       we have 

    
   * 

 (  
 
  )

     
 (  

√ 

  √    
)  +  

We will only consider the problem for      .The case for      

must be dealt with numerically. The minimum mean-square error is attained 

for              , and we have approximately 

    
  

     
 

    
  (

           

(        ) 
)  

               
 

    
  

so that the asymptotic efficiency is 

 

         
        

Taking the approximation              the (constant) efficiency is  

 

         
       also. The predictor will then be  

 

* In Cramér (1946), p. 368, it is shown implicitly that             ( 
   ).  
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 (  )       (     )
    ⁄ ( (  )   (  )) 

where  (  )       
  is then the sample quantile for probability      

   
 
               . This technique, whose asymptotic efficiency is 

independent of    and   , is to be used for values of         where the 

efficiency of the predictor  (  )   (  ) ( ̅   (  )) is smaller than     . For 

      a better predictor will be considered. 

7.7 The maximum likelihood predictor when       

The maximum likelihood estimators of    and   for known   (  ) are given 

by the equations 

∑ (    ̂
 
 )    

∑ (    ̂
 
 )  

 
    

    
∑(    ̂

 

 

)   

and  

 ̂   
 

 
  ∑(    ̂

 

 

))
     

where the variances and covariance are asymptotically 

 ( ̂)  
  
 

   
     ( ̂) 

(    )
   (      )

   
    

 ( ̂  ̂)  
  (    )  (      )

   
    

     
  (    )

  , (      )   
 (      )-  

The predictor of the quantile           to be used must be  ̂  

       ̂  with the mean-square error 

    
 ( ̂         ̂) 

  
     (    ) (      )      (    )

  (      )     
 

   
 (    )

 , (     ⁄ )   (      )-
    

This is exactly equal to the asymptotic value of     and so the 

efficiency is  . This technique requires the use of computers for the 

determination of   ̂ and  ̂. Since, however, it is desirable to have simpler and 

more practical techniques when computer facilities are not available or, also, 

to initiate iteration, we consider in the next section some all-range predictors 
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in this category. Such predictors can be quite useful since the range      

may be important for practical applications. 

7.8 Some all-range predictors  

The difficulties found above in respect to computability and efficiency of the 

proposed predictors can suggest the consideration of the traditional approach, 

using quantiles and moments, since their variances are of order     . 

For example, consider the quantile  (  )  for the probability   

   (     ), whose asymptotic efficiency for the bound   ̅  is given as 

  (      )

  
  (      )    )   

 

which is approximated by       (     ⁄ )   for large  . For     (one-

step predictor) we have the following table of efficiencies: 

           
   (  )                   

 

This short table shows that the sample quantile for probabilities 

   (     ), whose efficiency fades out with  , is not useful in the range 

    . 

For      the efficiency is given, using the bound    , by 

 

     
 (    ),  

     (    )  (  
 
  
)     -  (    )

  , (     ⁄ )     
 -

(      
  

  )(    )
  , (     ⁄ )    (      )-

   

 

The short table of efficiencies for      is: 

                    
   (  )                     

 

which shows that the quantile predictor has an almost constant efficiency of 

about 60%. 
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Consider now the use of a predictor based on the method of moments 

 ̅   (  )  , where     denotes the standard deviation of the first sample. The 

mean-square error for reduced values is 

    
   ,( ̅   (  )       )

 -   ,( ̅       )
 -   

  [( ̅       ) ]  (  )   ( 
 )   (  )  

The covariance between   ̅  and    is asymptotic to ,  (  )  (  )-    by the 

 -method, where   (  ) is the skewness coefficient. 

Let   (  ) be the mean value of    . We have 

  (  )  √ (  )   
(  (  )   )√ (  )

  
 

where   (  ) is the kurtosis coefficient (*) and 

    
  

 (  )

 
 (           )

   , ( ̅  )  (           )   (  )-  (  )  

 (  )  
 (  )   

The value at which the quadratic attains the minimum, as 

 ( ̅  )  
  (  )  (  )

  
   

 

 (*) A short proof of the asymptotic value of    is given. From Cramér (1946), p. 353, 

we have the following relation, 

 (    (  ))
  

(  (  )   ) (  )

  
  (   )  

Developing the square and taking mean values, we have 

   

 
  (  )    

 (  )  
(  (  )   ) (  )

  
  (   )  

and so 

    (  )   (  )   
  (  )   

  
   (  )   ( 

  ) 

from which the desired result follows. 
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converges to   

 (  )   
           

√ (  )
 

so that the asymptotic value of the mean-square error is 

    
  

 (  )

 
*  

  (  )(           )

√ (  )
 
(  (  )  )(           )

 

   (  )
+  

where 

  (  )  , (     ⁄ )    (     ⁄ )  (     ⁄ )     (     ⁄ )-    ⁄ (  )  

and 

  (  )  ( (     ⁄ )    (     ⁄ )  (     ⁄ )    (  

   ⁄ )   (     ⁄ )     (     ⁄ )-   (  )  

Then the predictor is 

 ̅  (
           

 (  )
  ⁄

)    

The asymptotic efficiency with respect to    is 

     
 

   
  (  ) *  

  (  )(           )

√ (  )
 
(  (  )   ) (           )

 

   (  )
 +

 

and the asymptotic efficiency for     , with respect to    , is given by 

  
     (    )  (     ⁄ )       (    )

   (     ⁄ )     
 

  
 (    )

    (  ) , (  
 
  
)    (  

 
  
)- *  

  (  )(           )

√ (  )
 
(  (  )   ) (           )

 

  (  )
 + 

 

A short table for the first efficiency for     is: 

         
   (  )              

 

7.9 An example  

Consider the natural and simple predictor  (  )   
    ⁄  ( ̅   (  ))   

We will experiment with the predictor generating a sample of   

Weibull observations, computing the predictor, generating a new sample of   
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under the same conditions and comparing the minimum of the second sample 

with the value of the predictor. 

The experiments are given in Table 7.1 for 

Table 7.1 

   n m 

1.2: 50 20,40 

1.2: 100 50 

1.2: 500 50,100,200,300,400 

1.5: 50 20,40 

1.5: 100 50 

1.5: 500 50,100,200,300,400 

2.0: 50 20,40 

2.0: 100 50 

2.0: 500 100,200,300,400. 

The values   
     

     denote the observed smallest values in the second 

sample of    (generated observations). 

Table 7.2 

n m       l   
    

    
    

    
    

    
  

50 20 1.106482 0.618368 0.087202 0.171168 0.013614 0.067171 0.090015 0.170916   

50 40 0.999691 0.864131 0.037770 0.082242 0.012288 0.026883 0.027323 0.057124   

100 50 0.993607 0.870766 0.058743 0.094630 0.009652 0.075735 0.089076    

500 50 0.955362 1.053420 0.017990 0.053974 ≥ 1‘      

500 100 0.986448 0.811142 0.0005847 0.026973 0.009693 0.021219     

500 200 0.948326 0.995920 0.009625 0.020975 ≥ 1‘      

500 300 0.995920 0.995920 0.009625 0.016349 ≥ 1‘      

500 400 0.938055 0.927183 0.000687 0.007048 0.004685      

50 20 0.802585 1.157086 0.041248 0.097344 ≥ 1‘      

50 40 0.864939 0.919777 0.091047 0.157814 0.020942      

100 50 0.952770 0.885156 0.080250 0.144538 0.041757      

500 50 0.936661 0.987915 0.032320 0.098952 0.083899      

500 100 0.902707 0.901279 0.024205 0.065282 0.044599 0.059561     

500 200 0.931957 0.893814 0.009254 0.036226 0.011021

4 

     

500 300 0.906875 0.894213 0.003972 0.024120 ≥ 1‘      

500 400 0.948098 0.958196 0.004700 0.022078 0.001939 0.018320     

50 20 0.936665 0.870119 0.254734 0.407218 0.138128 0.288591 0.386233    

50 40 0.818688 0.914252 0.089966 0.205187 0.018976 0.090137 0.102450    

100 50 0.822177 0.981068 0.100348 0.202430 ≥ 1‘      

500 100 0.895189 0.837045 0.056219 0.140116 0.021859 0.023695 0.056533 0.063959 0.099370 0.118113 

500 200 0.918345 0.862408 0.076011 0.135573 0.010172 0.045231 0.054819 0.064132 0.093357 0.097550 

500 300 0.901596 0.894982 0.066431 0.114653 0.065947 0.076226 0.085539 0.095738 0.099727  

500 400 0.897788 0.884023 0.047098 0.089632 0.031186 0.046646 0.055452 0.076625 0.086074  

 

The table as well a great part of this section was taken from Tiago de Oliveira 

and Littauer (1976). 
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7.10 Downpassing probability of level  

The technique that follows is the one used for Fréchet distribution. In what 

follows we will suppose that     (  ) is known and, as said before, we 

have 

 ( ̂) 
  
 

   
   ,   ( ̂)  

(    )
   (     ⁄ )

   
     

and 

 ( ̂  ̂)  
  (    )  (     ⁄ )

   
    

where      
 ((    )

 ( (   (  )   
 (     ⁄ ))       guarantees 

the existence and regularity of the maximum likelihood estimators. 

Now, we will be interested in the downpassing a of level    ( )  

 (  |   )     (
   

 
) is estimated by  ̂( )   (  | ̂  ̂)   

As before, √  ( ̂ ( )   ( )) is asymptotically equivalent to 

√  *( ̂   )
   ( )

   
 ( ̂   )

   ( )

   
+ 

 √  (   ( ))     (   ( ))    * 
 ̂   

   
 
 ̂   

 
 + 

whose asymptotic variance is 

 ( )  (   (  ))  (    (   (  )))  *  
  
 

 
 (
    

   
 

(    )  (     ⁄ ) )  estimated as  ̂( ), substituting (   ) by ( ̂  ̂)  

As √   (
 ̂( )   ( )

√ ̂( )
)  is asymptotically standard normal, the one-sided 

asymptotic confidence interval with significance level    is 

   ( )   ̂( )  
     √ ̂( )

√ 
 

as before. 

In the case where the location parameter is known, taken as zero for 

convenience, we have 
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 ( )   (  |   )    (   ) 

and the variance-covariance matrix of ( ̂  ̂) is 
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(
  

 
 (   ) )
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(  

 (   ) 

  
)  

 (   )

  
 

 
 (   )

  
 

 

  
  

]  

 

The result is analogous to the one for Fréchet distribution (for maxima) 

with the exchange of  
   

 
 for  

   

 
    in the both matrices. 

Then, evidently √ ( ̂( )   ( ))  is asymptotically equivalent to  

√ (( ̂   )
   ( )

   
 ( ̂   )

   ( )

   
)  √ (   ( ))    (   ( ))(  

 ̂  

 
 

(    
 

 
)( ̂   )) with asymptotic zero mean value and variance 

 ( )  (   ( ))  (   (   ( )))  (  
 

  
 (        

 

 
 ) ) 

also analogous to the result for the Fréchet distribution. In the same way we 

see that: 

The one-sided asymptotic confidence interval for  ( ) is 

   ( )  ( ̂( )  
   

√ 
 √ ̂( ), 

with significance level     , where  ̂( ) , as before, is the expression of   ( ) 

with (   ) substituted by ( ̂  ̂). 

 

For an application to earthquakes see Tiago de Oliveira (1984‘‖) and 

references therein. 

 

A worked example 

Consider the data given in van Montfort and Otten (1978) of failure times 

corresponding to a complete sample of      observations, obtained in that 

order: 
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Table 7.3 

i t 1 i t 1 

1 6.0 13 109.0 

2 8.6 14 118.0 

3 17.8 15 119.0 

4 18.0 16 138.0 

5 27.5 17 141.0 

6 33.5 18 144.0 

7 50.5 19 146.0 

8 51.5 20 150.0 

9 69.0 21 151.0 

10 74.0 22 153.0 

11 74.0 23 153.1 

12 89.0 24 153.2 

 

Supposing     , we obtain  ̂             and  ̂             (with 4 

iterations!) from which the usual decision problems can be dealt with. 

The Kolmogoroff-Smirnov statistic is  ̂       |   ( )  

  ̂(  ̂⁄ )|            and as      we have √    ̂           

accepting thus the Weibull model for minima. 

When this is the case ― and it seems reasonable in the context of 

failure times — as           has a Gumbel maxima distribution with 

parameters            and        and, also,       has a Fréchet 

maxima distribution with parameters             and     , as seen 

before, we can use these transformations. 
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