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Stochastic sequences and Processes of Extremes 
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Abstract  

This chapter reveals a definition of extremal (maxima) 

random sequences and stochastic processes. Extremal 

sequences are the usual sequences of maxima. It can be 

obtained as stochastic processes of independent extremes 

with extremal margins. Extremal sequences and processes 

(distribution and properties), limiting characterizations, 

second order properties of extremal processes, jumps of an 

extremal process, logarithmization of time and the ergodic 

theorem for extremal processes, parameterization of 

extremal processes and statistics for extremal sequences 

and processes are discussed with explanatory examples. 
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14.1 Introduction 

We present a definition of extremal (maxima) random sequences and 

stochastic processes [the latter being distinct from the limiting constructions 

given by Dwass (1964) and Lamperti (1964)] following Tiago de Oliveira 

(1968); the insistence will be more on an actual characterization than on a 

limiting one. Extremal sequences are the usual sequences of maxima, and 

extremal processes will be obtained as stochastic processes (incontinuous 

time) of independent extremes (maxima) with extremal (maxima) margins. 

The limiting approaches will be described in a special section. 
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The definition being the weak one (in law), as seen essentially in the 

identifiability problem, the properties described are, chiefly, the second order 

properties for the case studied, with Gumbel margins. 

It will be clear that extremal processes are surely continuous to the right 

and almost surely with discontinuous trajectories. 

We will always assume the marginal distributions of extremal 

sequences and processes to be the Gumbel distribution (      

            , for reduced random variables). The other extremal sequences 

and processes are easily converted to Gumbel margins by logarithmic 

transformations if they are maxima and also using symmetry considerations 

when minima; its form will, naturally, be given in the limiting 

characterization section. 

The definition of processes by a non-limiting technique is analogous to 

that of Mann (1953) for Brownian motion, using the know “duality”, for 

independence, between sums and maxima (characteristic functions versus 

distribution functions), now extended to stochastic processes with continuous 

time. We also obtain stochastic processes, connected with maxima, whose 

one-dimensional finite behaviour was the one described asymptotically by 

Newell (1962) for diffusion processes, like the Orstein-Uhlenbeck Brownian 

motion. The structure of the jump process is obtained as well as a natural 

representation. 

Let us recall some results. 

A general Gumbel random variable has the distribution function 

           where                  is the distribution function of a 

reduced random variable           ; we also have               . The 

first moments are                                         ,    

      ⁄                                            
  

       , and        
      ; see Gumbel (1958). 

An extreme random pair         with reduced Gumbel margins has the 

distribution function            {         }     {      

           }  {        }      where the dependence function      

satisfies some conditions for        to be a distribution function with reduced 
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Gumbel margins; see Tiago de Oliveira (1962/63). In particular we have 
          

           , the lower bound corresponding to the diagonal case 

where we have     {   }    (for reduced margins) and         

corresponding to independence. 

The correlation coefficient has the expression 

   
 

   ∫                  
  

  
, 

    being equivalent to independence and     to the diagonal case. 

The probability          {       }        being reduced 

Gumbel random variables, has the expression      
     

    
 

  

     a.e., as 

      exists a.e.,; in the independence case          we have the logistic 

distribution and in the diagonal case we have          , where      is 

the Heaviside jump function                                  . 

Note that             does not exist in all cases — as       does not always 

exist; this is the case in all stochastic processes (sequences) connected with 

extremes, as happens in extremal sequences and processes and in EMS and 

EME sequences. 

In particular, for         
         

           , we have 

       if                       {           }    and 

      
 

           if         with a jump of  at        , the jump 

being the probability of            ; the correlation coefficient is  

     
 

  
     

where      ∫
     

   

 

 
            with             

 

   so that for 

    and     we have, obviously, the independence and diagonal cases. 

The expression of        corresponds to the biextremal model. 

The other coefficients are the difference-sign correlation       , the 

grade correlation              , and the medial correlation         

 , all increasing from   to   as   increases from     to      
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14.2 Extremal sequences 

Let              be a sequence of i.i.d. reduced Gumbel random variables 

and let                                           

                  

Evidently     {             }      {               }   

    {   
 

   
 

   }    
 

   
 

        }   
 
 

   
                 . This 

corresponds to putting               in the extremal processes, so we will 

only sketch some results. We can now consider the parameterized sequence 

          with real   and      . We have      {             } 

     {                           }                       
   

       

Let us now consider a periodic subsequence    
             integer. 

We can show, in two ways, that {  
 } and {  } have the same distribution apart 

from the parameters, which are       for the sequence {  }  and         

            for the sequence {  
 } . A simple one is to consider the 

sequence   
                      

                        etc. 

It is immediate that the   
  are independent random variables with the reduced 

Gumbel distribution. If we denote by {  
    

    
         

    
       

  

       
         

  }, we see that  

  
                and so        

        
               

  , 

and then      {  
         

    }       
 

   
 

                  
    , 

which is the same as that of {  } with the new parameters. 

Thus a change of timescale — or a periodic selection at instants 

       — leads to extremal sequences with the same properties. In particular 

we have                                 
        

        
      

    

                                        
    

        
        

        
   

Periodic sub-sampling does not alter the structure of the {  } apart from the 

location effect of the period. 



Statistical Theory of Extremes, 333-353, 2017 (Online Edition).                 J. Tiago de Oliveira  

337 

 

Another proof is analogous to the one given for extremal processes 

where this effect is integrated in a general change of the time scale. 

An ergodic (type) theorem, analogous to the one for extremal 

processes, can be written. It is       , 

 

         
 ∑

  

 
 
        √    

   
→      . 

The proof is not important being analogous to the one to follow and 

statistically irrelevant. 

14.3 Extremal processes: distribution and properties 

A stochastic process             is called an extremal process (of maxima) 

if: 

1)                        , where      and        are independent 

random variables      ; 

2)         and         are independent random variables if the time 

intervals         and            are disjoint;  

3) The processes is time-homogeneous, that is, the distribution of        

depends only on   and is independent of    ; 

4)           .  

If      is the distribution function of       we have  

     {      }                  {        }       . 

Let        be the distribution function of      and denote by         

the distribution function of        , independent of    by assumption (3). 

Thus we have, by (1) and( 2), 

                                              

                          

so that 

                            

As the solution of this functional equation, for measurable functions, is 

the exponential function, we have 
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As                                
      and by (4).           

we obtain 

         
              

as 

                   . 

This result was obtained asymptotically by Newell (1962) under other 

conditions. 

Let us finally introduce a new assumption, that one-dimensional 

margins have Gumbel distributions, by:  

5)           (standardization of the time unit). 

We have then 

The one-dimensional distribution of                          ; 

the two-dimensional distribution of                          is 

                                        ; 

and, in general, the  -dimensional distribution of                        is 

                                               
   . 

It is also immediate that, with      denoting the Heaviside distribution 

function of the almost sure random variable equal to zero, then 

     is a Markoff process with transition probability function 

                        
          . 

From this transition probability function we get, denoting by          

and             the process intensity and the (relative) transition probability 

function (using formula (8.8.5) of   Fisz (1962)), 

               [                            

                                     , 

the following result: 
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An extremal process is a purely discontinuous (step) Markoff process where 

               [                                ,  

so that 

                 and                                 . 

For this purely discontinuous Markoff process we can immediately 

write the classical Kolmogoroff-Chapman integral equations. 

Let      denote the upcrossing time of the level  . As      {     

 }       {            }                  , we can say that: 

The distribution function of the upcrossing time is 

    {      }              . 

Some more results can also be given. 

A first one, relating the chance experiments between points of time, is 

that for       we have                          , as follows from the 

two expressions of       in     , directly and by way of      . 

As                         is a reduced Gumbel random 

variable we see that  
    

     

  
→  . 

Finally the least squares predictor of     , knowing       

                             , as      is markovian, it 

depends only on    is given by 

              ∫                               

  

  

  

whose mean-square error is 

∫ [
  

  
 ∫     (            )      [              

               
  

  
 . 

From the practical point of this is not very rewarding and it is simpler 

to use the linear predictor                . 

Notice that, as     is not decreasing, we know that 

 ̃                     . 
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14.4 The limiting characterizations 

We will sketch another characterization of extremal processes; for details and 

enlargements see Dwass (1964, 1966, 1973), Lamperti (1964), Resnick (1973, 

1975) and Resnick and Rubinovitch (1973); for other approaches see 

references in Galambos (1978) and Leadbetter, Lindgren and Rootzén (1983). 

Let {  }         be a sequence of i.i.d. random variables with 

distribution function      and such that there exist    and        such that 

     {
 

   
 

             }             
 
     , where the proper 

and non-degenerate limiting distribution is necessarily a Gumbel distribution 

function               , or a Fréchet distribution function       

                                         , or even a Weibull 

distribution function                                        

          . 

Let us define, for each          and    , stochastic processes 

          (      [   )       ⁄         ⁄  

             for         , 

[   denoting as usual the largest integer   . 

As     {       }   [            [ [           [    ⁄  

      

and more generally, for            , 

    {                               }   

    
 

   
 

        
      

 
   
 

        
       

 
   
 

                   , 

we define an extremal reduced process      as a limit of       which 

extends to Fréchet and Weibull margins the extremal process defined with 

Gumbel margins. 

It is evident that all “margin-free” properties such as the jump process 

described below. (to be Poisson-distributed) and all non-parametric correlation 

coefficients have the same behaviour as in extremal process with Gumbel 
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margins, which will continue to be considered in what follows. Note, in 

particular, that second order properties are not always valid for extremal 

processes with Fréchet or Weibull margins. 

14.5 Second order properties of extremal processes  

The second order properties of extremal processes (with Gumbel margins, to 

be dealt with in the rest of the chapter) depend on the form of the covariance 

(or correlation) function, as the margins have mean value and variance. 

From the expression of the two-dimensional distribution function of 

              passing to the reduced margins              and        

      , we see that the mean value function of      is              and the 

dependence function         is the biextremal one 

            
                       

       
              

    , 

with parameter               . Consequently: 

An extremal (Gumbel) location-dispersion free process has the mean 

value         , variance       and the correlation function 

                 ⁄     
 

  
∫

    

   

 

    ⁄

     
 

  
∫

     

   

    ⁄

 

     

 

        ⁄    

the processes is integrable, continuous and indefinitely differentiable in mean 

square except at origin       where   is not continuous. 

The mean-square continuity is, evidently, consistent with the almost 

sure discontinuity, the discontinuities being moving (random) discontinuities; 

the graph of the process is a non-decreasing random step function. 

14.6 The jumps of an extremal process 

As we showed, the transition probability function is 

                         
                . 

Consequently the probability of zero jumps in the time interval         

is given by 
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          ∫       
  

  
                 ⁄ , 

because the probability of zero jumps in                     (which implies 

        ) is           ; the probability that we have at least one jump is 

then 

                  . 

Notice that for every     we have     {       }             

so that: 

For           is finite with probability one. 

If           denotes the probability of   jumps in the interval        , 

the probability of zero jumps in the interval           is given by 

            
  

    
   

 

  
     , 

and as 

             
 

  
     , 

as is natural and will be proved later, then 

                             . 

The basic equation is 

                                      

                            . 

which, as derivatives exist, can be written as 

            
             

    
                 

 

  
            

 

  
 

    .  

and gives, for    , 

             

     
 

 

  
                       . 

If we denote by             ∑    
          

  the generating function of 

the probabilities, then                              . 
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The generating function  , from the difference-differential equation for 

the probabilities, satisfies the partial differential equation 

 

 
 
   

   
 

           

   
  

 

  
  

           

 
 . 

From                  we obtain 

 

 
 
   

    
 

   

  
, 

whose solution is evidently 

            
  
  

                   ⁄   

owing to the known values of               and              . But   is 

the generating function of the Poisson distribution with parameter    

           , and so 

The jumps of      in the interval,         have a Poisson distribution with 

parameter                 ; the mean number and variance of jumps 

increase logarithmically with time. 

Thus in the finite interval       we must expect infinity of jumps; the 

natural science interpretation is easy: in the process beginning at         

    we should except an infinite number of jumps to obtain any finite value. 

Let us show, finally, that 

          
 

 
     ; as            

 

 
     , it is sufficient to show 

that                . As we have two or more jumps on        , let  ̃ 

denote the mid-point of the instants of the first and last jump and    ̃  its 

distribution function. We can clearly write 

           ∫   (     ̃)

 

 

    (   ̃    )    ( ̃) 

 ∫
 ̃

   ̃

 

 

 
   ̃

   
   ( ̃)  

  

  
 ∫

 ̃

 

 

 

 
   ̃

 
   ( ̃)  

  

  
 

with                 as we wished to show. 
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The following representation (i.e., a stochastic process with the same 

finite-dimensional distributions) can be given: 

For      the extremal process      is equivalent in law to 

                  [     [ , 

                 [     [ 

  

where         are the jump times after   , having the densities      
  for 

     ,       
  for         and                      are the values at 

the jump times           with the distribution functions 

                     

            
            , 

                     

            
            ,  

  

The proof is immediate because the probability of no jumps in the time 

interval [     [           and the probability that, as there is a jump, its value is 

smaller than    is given by the transition probability function truncated at   . 

The study of the times of the jumps, as will be seen, is not helpful for 

statistical decision making. 

14.7 The logarithmization of time and the ergodic theorem for extremal 

processes 

As      appears frequently in the expressions connected with extremal 

processes, we can consider the use of a new time variable  ̃        

(logarithmic time) defining a new process  ̃  ̃      ̃ , whose 

characterization could be transposed from that of     . We will give a 

different one, equivalent but more natural for the case. Let us just remark that   

     { ̃  ̃   }       ̃ . 

Consider then the (transposed) extremal process: 

1)    ̃   ̃  is defined over all the real (time) line; 
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2)  ̃  ̃        ̃  ̃    ̃  ̃   ̃   where  ̃  ̃  and  ̃  ̃   ̃  are 

independent random variables;  

3)  ̃  ̃ has the Gumbel distribution      ̃ for convenient 

standardization of the time (or change of origin) and change of scale 

(i.e., a linear change of the clock). 

Note immediately, that from (3) we have  ̃       with 

probability one. 

Let us denote by       ̃       ̃       { ̃  ̃        ̃  ̃     } ; 

we have,       ̃      ̃       { ̃  ̃       ̃  ̃       ̃  ̃   ̃     }  

              ̃         ̃   ̃   using hypothesis (3) for the distribution of 

 ̃  ̃  .  

With hypothesis (3) we have also, putting      , 

      ̃         ̃         ̃   ̃   

and so 

      ̃      ̃                 ̃               ̃    ̃   , as could be 

expected from the relation     ̃. 

Thus the mean value function is    ̃ , the variance 
  

 
and the 

correlation function 

 ̃  ̃   ̃       ̃   ̃ ⁄   
 

        ̃   ̃   , 

so  ̃  ̃   ̃   ̃     ̃  is a weakly stationary process. 

 ̃  ̃  is thus an ergodic process (of second order) and we know that 

 

 ̃  ̃
∫  ̃  ̃ 

 ̃

 ̃
 ̃  

  
→       ̃   ̃    . 

Passing to the original clock     ̃     ̃      ̃, we get 

 

        
 ∫

           

 

 

 

   
  
→       ⁄     

or, in a simpler form, 
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      ⁄  
 ∫

    

 

 

 

       √    
   
→    

when   ⁄    . We have for the variance of 
 

      ⁄  
∫

    

 

 

 
   the 

expression 

    ⁄   
 

       ⁄    
∫     

 

 

 

   
 

    

 
 

       

   
   . 

Notice that if the margins are Fréchet or Weibull, the correlation 

coefficient between       and                 also depends only on  

      (and   ), when the second moments exist. 

14.8 The parameterization of extremal processes 

Let          be a (reduced) extremal process and consider the two (general) 

extremal processes 

                               and 

                         . 

Their mean values                    and                      are 

equal if          ; also the covariance function in both processes is 

  
          

       
   . This suggests that       and      can have identical 

distribution. In fact we have (with      ) 

    {         }      {             ⁄ } 

  
 
 

   
   

 
   
   

    

 
                

  
 
 

   
  { 

 
   
   

      ⁄              }  

and also 

    {         }      {           ⁄ } 
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which are equal if         as said before. 

Evidently any splitting                                 is 

admissible. 

Owing to linearity we will prefer the parameterization in      ; any 

change of time unit (scale) is given by        . 

14.9 Statistics for extremal sequences 

Let {      }  be a extremal sequence, as described before, with mean 

values                  and covariance function             

   
         

        
 with       ∫

     

   

 

 
                              , 

and consider the sequence {      }                   real and    ; 

as said before we can have a subsequence {   }  of {  }  with       an 

integer, obtained from the original by periodic sampling, with the convenient 

change of parameters (the location one, in this case). We know then that 

                                      
         

        
 . 

As                     with             where       

  and  (     )             
         

        
 , we know that the least-squares 

(unbiased) estimators of        are given by 

[
  

  ]      ∑           ∑  [   

where    [
   

     
]  ∑     [    (variance-covariance matrix), [    

[         (the transposed sample vector) and        ∑      assumed to be 

  ; see Silvey (1975). The least squares estimator of the quantile     

    is, as known,          , which is unbiased           and has the 

variance         [   (  ∑      ) [
 
 
]                    

        with    ∑          [
             

             
]. 
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From the form of ∑  [                     , the least squares 

estimators         do not seem very easy to manage. 

Another pair of (unbiased) estimators is given by minimizing 

∑  
 
 

 
  [          [               as 

[
   

   ]            [   [ 
 ∑    

∑    ∑   
 

 
]
  

[
   

     
 ] [

  

 
  

]  

 [ 
 ∑    

∑    ∑   
 

 
]
  

  [ 
∑    

∑       
]  

 
 

  ∑   
   ∑       

 [ 
∑   

 
  ∑     ∑     ∑       

 ∑     ∑       ∑       
]. 

The estimator of   is, then,               and 

       [                 ∑            [
 
 
]. 

The efficiency of     with respect to    is given by 

 
                           

                               
  

where  

[ 
                

                
]               ∑            . 

The general efficiency of the system           with respect to         can be 

defined in two ways:  

a) as the value of 

       ∑       

    {             ∑            }
 

          

        ∑            ∑    
 ; 

see Cramér (1946); 

b) as the smallest root of 

   ( [
             

             
]   [

                

                 
] )   ; 
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see Tiago de Oliveira (1972) and (1982). 

Both definitions impose a lot of numerical calculation, beginning with 

the inversion of  ∑  [                     , and do not seem easy to 

manipulate. If      we get for both estimators. 

[ 
  

  ]  [ 
   

   ]   
 

    
[
                

     
]  

and both efficiencies are equal to 1. 

In general we use the estimators: 

   
   ∑      ∑           ∑          ∑        ∑            

 ∑           ∑        
  

   
 ∑           ∑       ∑      

 ∑           ∑         
. 

whose variance-covariance matrix was given above. 

14.10 Statistics for extremal processes 

Consider now the extremal process            (Tiago de Oliveira, 1968) 

whose mean value function is             , covariance function        

                                  where, as before,      

 ∫
    

   

 

 
                            ; the correlation function is  

       
 

        . 

Let us consider the extremal process                  . It is well 

known (see above) that there is an essential unidentifiability problem between 

the use of                        and               with the 

equalities                       . We have chosen the present 

formulation because then the parameters are linear. We will suppose that      

is known (observed) for the interval [            [ , which is irrelevant, with 

     . 

We could approach the problem by an analogous procedure to the least 

squares, substituting the sums by integrals, i.e., as                 

                                    , with mean value zero), by 

minimizing ∫ ∫     
 

 
                 ̅                   
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              where  ̅      is the “inverse” of the covariance function        

analogous to the relation between ∑   and ∑. The solution is  

[ 
  

  ]   
 

 ̅    ̅   ̅ 
   [ 

∫ ∫  ̅   ̅        ̅                   
 

 

∫ ∫  ̅        ̅    ̅                    
 

 

 ]  

where  ̅  ∫ ∫
 

 
 ̅                ̅  ∫ ∫

 

 
 ̅                    and  ̅  

∫ ∫
 

 
 ̅                                  are unbiased estimators of      . The 

same result can be obtained be seeking the function     for which 

∫     
 

 
          is the least-squares (unbiased) estimator of        , 

which can be shown, by a variational method, to be            . But the 

result is unhelpful because the determination of  ̅      is practically 

impossible. 

As before, for extremal sequences, it is natural to seek the estimators 

          such that the (empirical) mean-square distance 

∫      
 

 
                 ∫      

 

 
                    

is a minimum. We get the also unbiased estimators 

[
   

   ]  
 

∫    
 

 
   ∫          

 

 
  ∫         

 

 
  

  

[ 
∫          

 

 
 ∫     

 

 
    ∫     

 

 
    ∫     

 

 
       

∫    
 

 
 ∫     

 

 
         ∫     

 

 
    ∫     

 

 
   

]  

Evidently we could choose two functions      and     and take 

 ∫     
 

 
         ∫     

 

 
          as estimators of       with the condition of 

quasi-linearity or of unbiasedness;          , is one of these choices, 

optimization being practically impossible. 

The complex structure of these estimators suggests the use of the 

ergodic theorem, when possible. As shown before, 

 

        
∫

    

 

 

 
       √   

   
→       ⁄      

or, under a more general form, 
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∫

    

 

 

 
        √   

   
→      . 

If we take    √               ⁄                         we 

see that 

 

             
  ∫

    

 

 

          
   

   
→                  .  

As, then,   ⁄             increases with    , if we know      in an 

interval [    we can estimate        taking     and   

                . Thus the estimation is obtained by taking    
 

             
 ∫

    

 

 

          
    when                       √  , thus 

allowing, the estimators of large quantiles, which is important in the 

applications. 

The variance of this estimator of        is given by 

     

   
 

               
 

 
∫ ∫

         

 ̅      

    
           

 
 

             
  ∫ ∫

               

          
        

   
   

 
 

             
 ∫

    

 
   

 

           
 ∫

   

 

 

           
  

 
 

             
  ∫

    

 
   

 

           
    

   

         

 
 

             
 ∫

    

 
                     

 

           
  

 
 

             
 {    [                 

     

 
   

         ⁄
    

 ∫                   
     

 
           

 

         ⁄
}  

 
 

             
{               

       

     

 ∫                   
     

 
          

 

         ⁄
}             ⁄    
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 ∫                  

     

 
 

    

   
   

 

         ⁄
  

  (         ⁄ )  
 

             
∫                  

 

         ⁄

     

 
 

    

   
   

  (         ⁄ )  ∫
     

   
     

 

            

 

         ⁄ ∫
     

   
   

 

         ⁄
  

Analogously we could chose a point            and study the 

stochastic integrals 

 

      
∫ 

    

 
     and  

 

      
∫ 

     

 
    

To have        
 

 
    

 

 
   the largest possible we must take   

√        
 

 
 √    

 

 
.The convex combination of those two integrals 

with coefficients 
   √        

   √   
 and 

          √  

   √   
 estimates, unbiasedly, and 

mean square, the quantile       and consequently, for             
            is the natural linear predictor of     . 

An important question in the integrals above is the assumed existence 

of jumps in the interval of observation [    . Suppose that      has no jumps 

in [     a fact that has probability    . Noting by   the value of      in the 

interval the estimator 

 ∫
 

 
              ∫

 

 
                 ∫

 

 
           ∫

 

 
                      as by 

the quasilinearity we must have ∫ 

 
               ∫ 

 
           . 

The probability of being capable to estimate is, then ,      . 

In that case is easy to show that 
         

      
 
  
→   if   ⁄     but an 

analogous estimator of    based in the extreme values      and      does not 

converge in m.s. to   . 

The study of the jump process does not see to illuminate the structure of 

the location parameter     or of the change of time unit    . In fact, the 

extremal process      - and the processes                    -have a 

random number of jumps         in the interval [            with a 

Poisson distributions with parameter 

                          
  

  
   [     there is an infinity of jumps with 

probability one. If   is a time instant (be it a jump instant or not) the 



Statistical Theory of Extremes, 333-353, 2017 (Online Edition).                 J. Tiago de Oliveira  

353 

 

probability that the next jump instant is     is given by                . 

In any case a change of time unit does not alter the structure. 

The mean value of inter-jump times is 

            ∫  

  
                            

which shows that the averages of inter-jump times is not useful. Also the 

median of       is      , independent of the time unit. 

As            
    

  ∫ 

  
     

 

   
    

  
   

    
 if     and nothing 

is gained because the effect of a change of time unit is cancelled; variance 

exists if      . Also we have  

    {
        

  
  }  

 

   
. 

For other details see Deheuvels (1981, 1983) and references therein. 
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