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Abstract  

This chapter reviews the step-by-step writing of a 

program for the computer in the appropriate computer 

language. The model explained in four steps: Statistical 

Choice of Models (SCM), Statistical Analysis of Models 

(SAM), Statistical Decision for Multivariate Models 

(SDM) and Stochastic Processes Analysis (SPA). The 

exact distribution of extremes is approximated by one of 

the asymptotic distributions.  
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16.1 Introduction 

This chapter is not a program for GEA, which would differ according to the 

language used, nor a set of recipes for the concrete analysis of data. It 

presupposes knowledge of the corresponding chapters and the writing of a 

program for the computer used in the appropriate computer language. This 

guide is, at most, a non-diagram fluxogram of the procedures to be 

implemented in each computer + language system. In fact, with every system, 

we can obtain (to some decimal points of accuracy) the results that will be 

analysed in the Case Studies chapter. In general we will think of maxima 

(largest values) of samples.  
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This sequence of procedures depends, evidently, on the formulae to be 

found in Parts 2, 3 and 4. We assume, throughout, that the exact distribution 

of extremes is approximated by one of the asymptotic distributions. 

16.2 Step 1 — Statistical Choice of Models (SCM) 

This initial step, for univariate distributions (or margins in the multivariate 

case) leads to the (preliminary) model to be fitted to the data and subsequently 

used. It can be omitted if there exist justifications (such as theoretical results, 

previous experience, etc.) to justify some assumption and, thus, to act in such 

a way. Although in this phase we integrate a geometrical plotting of data, its 

purpose is not to justify the statistical choice made analytically but to support 

intuition and to clarify for experimentalists the use of the assumed model. 

Thus, after filing the data — for each margin if the data are multivariate 

— we can do the following types of GEA, which are not mutually exclusive. 

For graphical choice, after ordering the univariate (or univariate 

margins) data, we plot them on a Gumbel probability paper, as said in Chapter 

4 and choose one of the 3 models (Weibull, Gumbel and Fréchet) according to 

the “eye-curvature” of the plotted points. 

This graphical choice, although attractive and intuitive, must be 

confirmed by the use of the analytical choice, through the test statistic  ̂  and 

the associated decision rule (Chapter 8). Recall that  ̂  presupposes that the 

location-dispersion parameters of a possible Gumbel distribution are 

estimated as said before.  

This trilemma decision, analogous to an LMPU two-sided test, splits 

the next step in three directions, according to the chosen model or alternative 

(Weibull, Gumbel or Fréchet). In this case we choose between     

(Weibull),      (Gumbel) and     (Fréchet) distributions (in the von 

Mises-Jenkinson formula), excluding thus the distributions of extremes that 

are not attracted to any of the limiting distributions. 

In the cases where we can assume, with sufficient information, that 

       or        , we can have a usual LMP test, also using the test 

statistic  ̂ . 

Another (weak) check of the sign of              can be made by 

using the statistic    (Chapter 8), intuitive but not as efficient as  ̂ . 
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A comment: if the graphical choice and the analytical choice (with  ̂  

and its ancillary,   ) show a clear-cut discrepancy we can conjecture that the 

asymptotic approximation was not obtained for the sample         used, that 

the i.i.d. condition is not (approximately) verified, or even that there does not 

exist an attraction to any of the asymptotic distributions. A pragmatical 

approach must then be tried. 

16.3 Step 2— Statistical Analysis of Models (SAM) 

After assuming (i.e., having made the statistical choice of) one of the 

asymptotic distributions (of the univariate margins, in the multivariate case) 

the next essential step is to obtain estimators of the parameters. If the Gumbel 

distribution is assumed then   ̂  ̂  have been obtained in the first step, and 

they can be used for the different problems described in Chapter 5 and 

possibly others. If the Gumbel distribution is not assumed (i.e.,     ) the 

techniques relative to the assumption of the Fréchet distribution       are 

described in Chapter 6 and  those for the assumption of the Weibull 

distribution        are dealt with (but for minima) in Chapter 7 . 

In all these cases, parameters and quantiles are estimated as well as 

probabilities of over- and underpassing threshold levels, and tests of 

hypotheses, prediction, discrimination, tolerance intervals and multisample 

analysis have also been described when possible. 

Recall that if the location parameter is known we can easily reduce the 

Weibull and Fréchet models to the Gumbel one by exp/log transformations.  

The tail estimation must be made according the third approach given in 

Annex 4. 

16.4 Step 3 — Statistical Decision for Multivariate Models (SDM) 

Let us suppose that we have vectors of extremes, whose margins have been 

studied (Step 1) and assumed to have one of the asymptotic distributions. The 

case for bivariate extremes is, in part, dealt with theoretically but the 

multivariate case is very partially covered. 

Various bivariate models exist (Chapter 10) but it seems, for the 

moment, that essentially the logistic and in second place the biextremal and 

natural models most often fit to the data; the last two are very easily 

generalized to the multivariate case. 
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In the bivariate case, the most important initial step is to test for 

independence as a reference pattern, although we can in general expect 

dependence. Once the dependence is confirmed and a bivariate model 

assumed we should estimate the dependence parameters and act accordingly. 

Chapter 11 gives the essential formulae. But it should be recalled, if we are 

dealing with the multivariate case, that if there exists independence in the 

bivariate margins than we should always have independence, and we are 

returning to Step 2. 

Sometimes, and at this state of knowledge, the estimation of the 

dependence function can be made intrinsically and compared with the 

supposed and assumed bivariate distribution, in an intuitive way. 

For the multivariate models, after the bivariate studies are made, we can 

try to assume one the bivariate models for the corresponding margins. The 

logistic, the biextremal, and the natural model may be the best fit to data. 

16.5 Step 4 — Stochastic Processes Analysis (SPA)  

In principle, although it is not necessarily always the case, we may suppose 

that every stochastic process (of extremes), by a choice of observation times, 

is reduced to a convenient random sequence (originated from random or 

periodic sampling); then, with a discrete time data, we will follow the 

procedures for random sequences; otherwise we will follow directly the 

procedures for stochastic processes. 

As strong assumptions are made about the margins in general Step 2 

may be of interest. 

As a first approach, after filing the data and plotting it against a time 

variable (the data may be a sequence or a process) we try to “see” if it follows 

globally one of the patterns described in Annex 6. 

Then we try to fit of curvilinear regression to the observed sequence: 

linear in       for extremal sequences, constant for EMS sequences, 

asymptotically linear in   or constant according to      or      for EME 

sequences, and linear in   for sliding sequences; recall that in all cases 

variance is constant. For stochastic processes fix a net of points, at equal 

steps, and consider the sequence of observations at each point of the net; it 

will be convenient to use various nets to reinforce the assumed model. 
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When dealing with random sequences: 

a) if the extremal sequence model is assumed, use formulae of Chapter 14; 

b) if the EMS sequence model is assumed, use formulae of Chapter 15; 

c) if the EME sequence model is assumed, use formulae of Chapter 15; 

d) if the sliding sequence model is assumed, use formulae of Chapter 15. 

When dealing with stochastic processes: 

a) if the extremal process model is assumed, use formulae of Chapter 14; 

b) if the EMS process is assumed, use formulae of Chapter 15. 

***** 
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