

Statistical Theory of Extremes

Homepage: http://www.gathacognition.com/book/gcb14 http://dx.doi.org/10.21523/gcb1

Part 1

Probabilistic Patterns of Univariate Statistical Extremes

Annex 1

On The "Duality" between Extremes and Sums

J. Tiago de Oliveira

Academia das Ciências de Lisboa (Lisbon Academy of Sciences), Lisbon, Portugal.

Editor(s)	Published Online
J.C. Tiago de Oliveira	23 June 2017

For simplicity we will deal with some "duality" between sums (or averages) and maxima, the translation to minima being obvious from the relation $n \qquad \qquad n \\ \min{\{X_i\}} = -\max{\{-X_i\}}.$

The "duality" is expressed by the two columns in correspondence, where there are various gaps. F(.), F(.), ... and $\phi(.), \phi(.), ...$ will denote the distribution functions and the characteristic functions.

Sums Maxima

$$\begin{split} S_k &= \sum_1^k X_i \\ \phi x(t) &= M_X \big(e^{itX} \big) \text{: ch. f. of } X \end{split}$$

$$X_i \text{ indep.} \colon \phi_{S_k}(t) = \prod_1^k \phi_i(t)$$

$$X_i$$
 i. i. d. : $\phi_{S_k}(t) = \phi^k(t)$
 (X, Y) indep: $\phi a X + b Y(t)$
 $= \phi X(a t) \phi Y(b t)$

$$(+,.)$$

$$M(aX + b) = a M(X) + b$$

$$V(aX + b) = a^2 V(X)$$

If $\{X_i\}$ i.i.d. have μ , σ^2 then

$$\phi(t) \atop (s_k - k\mu)/\sqrt{k} \, \sigma \to (e^{-t^2/2})$$

(Central Limit Theorem); in the general case "sometimes" the ch. f. of the normal law may be substituted by that of an indefinitely divisible law ; $\mu = \phi_X^{'}(0)/i, \sigma^2 = \phi_X^{'}(0)^2 - \phi_X^{''}(0),$ in the usual case.

If (X, Y) has a binormal distribution standard normal margins and correlation coefficient then Z = aX + bY has a normal distribution $N(x/\sigma(a,b))$ with $\sigma(a,b) = a^2 + b^2 + 2 \rho(ab)$.

If $\rho = 0$ (independence), $\sigma(a, b) = 1$ iff $a^2 + b^2 = 1$; in the case C(X, Z) = a.

$$M_{k} = \max_{i} \{X_{i}\}$$

$$1$$

$$F_{X}(t) = \text{Prob } \{X \leq x\} : d. \text{ f. of } X$$

$$X_i \text{ indep.: } F_{M_k}(x) = \prod_{1}^n F_i(x)$$

$$X_i$$
 i. i. d. : $F_{M_k}(x) = F^k(x)$
 (X, Y) indep: $F_{max(X+a,Y+b)}$
 $= F_X(x-a)F_Y(x-b)$
 $(max, +)$

...

...

If $\{X_i\}$ are i.i.d. there "sometimes" exist $(\lambda_k, \delta_k > 0)$ such that $Prob \{(M_k - \lambda_n)/\delta_n \leq x\} = F^k (\lambda_k + \delta_k x) \rightarrow \tilde{L}(x), \tilde{L}(x)$ then being $\Psi_\alpha(x)$, $\Lambda(x)$ or $\Phi_\alpha(x)$; for $\Lambda(x)$ we have $n(1 - F(\lambda_k)) \rightarrow 1$, $k(1 - F(\lambda_k + \delta_k)) \rightarrow e^{-1}$ or $\delta_n \sim 1/n \, F'(\lambda_n)$; there are corresponding results for Φ_α and Φ_α .

If (X,Y) has a bivariate distribution with reduced Gumbel margins then Z = max(X-a,Y-b) has a Gumbel distribution $\Lambda(z-\lambda(a,b))$ with $\lambda(a,b) = \log\{(e^{-a}+e^{-b})k(b-a)\}$

If k(w) = 1 (independence), $\lambda(a,b) = 0$ if $e^{-a} + e^{-b} = 1$; in that case $Prob \{Z \le X - a\} = Prob \{X - b \le X - a\} = e^{-a}$.