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Here it is stated the basis for the development of the whole 
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2.1 Introduction 

This chapter can be divided into two different parts: the first (laws of large 

numbers) which expresses, in a formal way, the intuitive ideas relative to the 

behaviour of sample maxima and minima and the way they converge to some 

values (finite or infinite) and the second (asymptotic distributions of 

extremes) dealing with the behaviour of extremes in large samples, which is, 

in fact, the basis for the development of the whole book. Although the first 

part is of almost entirely theoretical importance only, as its practical 

application is essentially nil, it helps to pave the way for the following 

developments. Practically  speaking  hardly  anyone  will use the laws of large  
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numbers, but many of the practical applications in which extremes have to be 

taken into account, such as the design of dams, the study of fatigue fractures, 

etc. are based on the asymptotic distributions of extremes. 

2.2 General introduction to the laws of large numbers 

We say that a sequence of random variables                verifies a law 

of large numbers if there exists a sequence of functions      (possibly one 

function   , a sequence of constants     , and a finite constant   such that 

             
 
→    as  →  ;   can evidently be taken as zero. 

The interpretation of this definition is easy: it means that for large 

              is close in probability to   , i.e. given        and       

   we know that for            we have 

                              , 

thus obtaining an approximate evaluation of the values of     for large  . How 

good the approximation is depends on how large   must be, for small 

          sometimes the approximation is bad even for very large    in real -

life conditions. Be that as it may, it gives a deterministic approximation that 

may be useful for rough calculations. 

Such a large framework, depending also on the choice of       has not 

aroused interest in itself and, until now, studies have specialized in two forms 

of     the additive and the multiplicative laws of large numbers, denoted 

ALLN and MLLN, respectively. 

The sequence      satisfies the ALLN if there exist      such that 

     

 
→ . Evidently the    are not uniquely defined because if     →   

also           
 
→  . 

If                  is a linear transformation then  

                 
 
→          ̃          also satisfies the ALLN with 

coefficients  ̃          

The sequence      satisfies the MLLN if there exist        such that 

     
 
→  . It is evident, also, that    is not uniquely defined, as           
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→  if        →    Evidently             satisfies the MLLN with 

      . 

Putting aside the case where      oscillates permanently in sign, we can 

suppose that we have    ultimately (i.e., for all        positive or negative. 

If    is ultimately positive we can define  ̃    if      and  ̃     if 

     which is such that     ̃ 
 
→    also if    is ultimately negative we 

can define  ̃     if,       ̃     if      which is such that     ̃ 
 
→  ; we can take it that we always have      or     . But if       

 
→   

and       then            
 
→  , and so we can – with a change of sign 

for    if needed – always take      ; an alternative was always to take 

     and have      
 
→    or      

 
→  . Note that the choice between 

     and      is easy. If MLLN is valid with      we have,       

denoting                                               

         ⁄                   ⁄        →   and      →    in 

reverse, if the MLLN is valid with      we have                   

                                    →          →   and 

     →   are the indicators for the choice of the sign of         →   

means that        has a probability close to   when   is large and so    

can, then, be considered practically positive; dually, if      →     , for 

large  , is practically negative. This frame is sufficient for the study of 

maxima, minima being dealt with by decreasing transformations. 

 Let us obtain some simple consequences: 

1)                           verifies the MLLN, with coefficients 

    , then        verifies the ALLN with coefficients       ; more 

generally if      verifies the MLLN with      then 

                 verifies the ALLN with        as coefficients; 

conversely, if    verifies the ALLN with coefficients    then 

          verifies the MLLN with coefficients          ;  

2) if      verifies the ALLN, with     , then      verifies the MLLN 

with the same coefficients    : it is a simple consequence of     

              
 
→   if         ; also if      and         

the same happens,       and       are in the previous conditions and 

so          
 
→  .  
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Let us now obtain the necessary and sufficient conditions to have 

ALLN for      with coefficients      and the MLLN for      with 

coefficients          

The condition      

 
→   is equivalent to                 →    

                                     →   and so         →   

and             →   ; as                                    →   

for      we get that      

 
→  implies         →   and         →

  ; the converse is immediate and so ALLN is valid iff         →   

and         →        . By the same technique we see that the MLLN is 

valid (with       iff             →   and            →          

2.3 The laws of large numbers (LLN) for extremes 

It is intuitive, at least in the i.i.d. case, that the maxima and minima of a 

sequence of samples should converge to the right-end point  ̅            

         ̅              ̅   and to the left-end point                if 

            if          

Let us suppose  ̅    . Then        
 

   
 

       ̅        

           by the definition of   ̅, which also implies       ̅     →   

and so         
  
→  ̅   Suppose, now, that   ̅    ; then       

 
    
 

     

          →  . In both cases we have shown that 
 

   
 

     
 
→  ̅. In 

the same way we can show that 
 

   
 

     
 
→  (finite or infinite). These results 

are independent of the knowledge of the distribution function       whether it 

is continuous, discrete or a mixture of both. They were shown in the proper 

(i.e., with zero probability at the points    if we are dealing with the 

complete real line) and non-degenerate (i.e., a random variable not taking 

some finite value with probability 1) cases; they can be extended to these 

situations but there seems little point in doing so. 
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But, with some knowledge of      , we can seek some deterministic 

sequences, essentially for       and  ̅      that in some way 

‗measure‘ the type of increase (for maxima) and of decrease (for minima) of 

i.i.d. samples. 

Although we could try to use a convenient sequence of increasing or 

decreasing functions, we will only consider the situations leading to an ALLN 

or MLLN. As stated, we stress that we are dealing only with an i.i.d. situation 

with distribution function       the increasing sample being denoted by 

{          }  

We say that      verifies the ALLN for maxima, or that 
 

   
 

      

verifies the ALLN, if there exist constants    (not uniquely defined, as said 

before) such that 
 

    
 

       

 
→    From the above we see that if  ̅  

   we can take      ̅. Let us consider the case   ̅    . We have ALLN 

iff          →    and          →  : this will be shown to be equivalent, 

when   ̅    , to 
        

      
→         . From         →   or 

                →   as 
    

   
→   when  →   we get             →   

and         →   is equivalent to             →   . Note that we can 

always take    as non-decreasing, substituting     by            ): it is 

evident that if         →    also                    →  . We need to 

prove, now, that                   →   also: as          →   for 

             fixed) we have           . Take then        and we 

have  

                   
 

   
 

           

    
    
   
   

          
 

   
        

          . 



Statistical Theory of Extremes, 11- 44, 2017 (Online Edition).                  J. Tiago de Oliveira  

16 

 

But                     if       and as      if fixed 

    
   
   

          →   and so for         we have 
    
   
   

             

Consequently for                    we have 

                     and                   →  . We can thus 

suppose         and   →    Situations like guaranteeing that for 

       some event or property happens will be described ―as for large  ‖ - 

its formalization is made as previously. 

Then for   large we can obtain   such that           and so we get 

                   and                      so that 

        

        
 

         

           
 and as             →   and             →

   we see that  
        

        
→       →    

Let us now prove the converse, also introducing one way of calculating 

the       Let us define    such that     
               and so    →  ; 

     is non-decreasing. From the condition 
        

      
→   as  →   or under 

the form 
        

        
→   as  →   (used above) we see that for       we 

have              
         

       
→  and so             →    also 

 (         )  
         

      
  

→   . Thus we have shown that when 

 ̅     the ALLN is valid iff  
        

      
→   as  →   and that one system 

of coefficients      is given by     
              .  

As a summary we have seen that: 

The ALLN for i.i.d. maxima is valid either when  ̅            ̅     iff  

        

      
→   if  →      for any      
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It is now easy to obtain the MLLN. If    ̅      it is obvious that 

 
     

 
    ̅  

 
→    Consider then the case  ̅      Then 

 
    

 
       

 
→           as  ̅    , is equivalent to 

 
    

 
  

      →     where     

           and so equivalent to the ALLN for 
 

   
 

        
        

 
→    

Denoting by                  
    , i.e.,          if   

                     the conditions for the ALLN and for obtaining 

the      for 
 

   
 

         
   are 

         

       
→   as  →   and         

     

  ⁄             or, returning to       and substituting    and    by y and 

      
          

      
→   as  →   and     

              . 

As a summary we have seen that: 

The MLLN for i.i.d. maxima is valid either when    ̅      or when 

 ̅      iff   
           

      
→       →    for any     . 

The conditions on      can be written as conditions on     .  

For minima we can obtain the ALLN and MLLN from the previous 

results using the fact that  
 

   
 

      
 

    
 

       , or directly. 

Then if      the ALLN is valid and also if     the MLLN is 

valid. Consider now the case for      ; the ALLN is valid iff 
    

      
→   

as  →    with    ; one system of coefficients is      (non-increasing) 

given by     
            ; the MLLN has no meaning if we continue to 

use     ; if we accept      then it is valid iff  
    

      
→   as  →    

   ; one system of             is given by     
            . 
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The statements for the ALLN and MLLN for i.i.d. minima are the 

conversion of the ones for i.i.d. maxima with the substitution of   ̅  by    and 

         by         

The initial study connected with LLN is the one by Dodd (1923), using 

different terminology; the modern aspect appears, with unnecessary 

restrictions, in de Finetti (1932) and Gnedenko (1943); the essential aspects 

are contained in Galambos (1978) and Tiago de Oliveira ed. (1984). 

2.4 Some examples concerning the LLN for extremes 

Let us now give some examples that can clarify for maxima the border 

between the non-validity of the LLN, the validity of ALLN (and consequently 

of the MLLN if   ̅      and the validity of MLLN. 

1. Consider, as the first example, the uniform distribution in        As 

  ̅    the ALLN for maxima is valid but the MLLN is valid only if 

   ; for minima  ̅     the ALLN is valid and the MLLN is valid 

with              , if we accept the possibility of       . 

We will now consider cases where   ̅               . 

2. Take as the second example the standard exponential 

distribution                                          

   . As  
        

      
       the ALLN is not valid but the MLLN is 

valid because 
           

      
         →   when  →    with      

(with         ; for minima the ALLN is trivially valid as      but 

the MLLN is not. 

3. Consider now the standard normal distribution with      
 

√  
 ∫          

 

  
 (      ̅    )  which is symmetrical and so 

we need to deal only with maxima. 

We have 

   
        

      
 

∫
 

√    
     ⁄     

  

    

∫
 

√    
     ⁄     

  

  

 
         ⁄

     ⁄
 →    

and the ALLN is valid; also MLLN is valid because 
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∫  
 

√    
      ⁄     

  

       

∫
 

√    
      ⁄     

  

  

    
       ⁄

     ⁄
→    

because    ; for                  we can use the easily obtained 

approximation  ̃  √      using  (     ̃    ) →    (  

   ̃    ) →    and l‘Hôpital‘s rule. 

4. The geometric or Pascal distribution        if             
       for    (with     denoting the integer part of    is a discrete 

distribution with jumps at the integers                  ̅  
  (sometimes written as                           
      . 

Then 
        

      
 

        

       which for     takes the constant value     

and so the ALLN is not valid but 

 
           

      
 

           

                    →   as  →   and so the MLLN 

is valid. 

Let us consider three examples connected with the asymptotic 

distributions of extremes, to be dealt with in the next sections: the 

Gumbel distribution and the Fréchet distribution for maxima, and the 

Weibull distribution for minima. They seem to be, in applications, the 

most important ones. 

5. For the reduced Gumbel distribution we have                  
    ̅      

Then for maxima as 
        

      
                →     and the ALLN 

is not valid; but the MLLN is valid because 
        

      
→   when  →    

and     . The coefficients are            
 

   
    ̃      ; this 

result could be expected because, for large        and      behave 

similarly. For minima we have 
    

      
→       →        and so 

ALLN is valid, a set of coefficients being             ; accepting 

     the MLLN is also true as 
    

          
→       →           : the 

coefficients        may be the same. 
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6. Consider now the reduced Fréchet distribution for maxima        
                                    . The ALLN is not 

valid as 
         

       
→       →         , nor is the MLLN as 

             

       
→         →        . For minima we have  

     

       
→

  for  →   and so the ALLN is valid, a system of coefficients being 

              ; here the MLLN has direct meaning and is valid 

because we have  
     

          
→   as  →        the coefficients being 

the same. 

7. For the reduced Weibull distribution for minima              

                                we have 
         

       
 

               →           and so only if      the ALLN is 

valid with coefficients              ; the MLLN is valid as 
       

             
→       →   with     , the coefficients being the same. 

For minima we get  
     

       
→        , and so the ALLN is valid 

with coefficients                      or more simply         ; 

the MLLN is not valid as 
     

          
→     as  →        . Notice 

that           , the standard exponential distribution, and so the 

results could be expected. 

Note that the non-validity of the MLLN in the last two cases is 

associated with the attraction conditions for the Fréchet and Weibull 

distribution of extremes, as will be seen in one of the next sections.  

Although we have analysed — as an exercise — the ALLN and MLLN 

in each case, part of the conclusions could be reached if we used the 

relations between the LLN given in a previous section. 

8. Consider now, finally, as a counter-example, the distribution function 

                            ⁄        ; it has     and 

 ̅     .  

For maxima as  
        

      
→         →        , the ALLN is not 

valid as well as the MLLN because 
            

      
→         →      

  . For minima as      the ALLN is trivially valid as well as the 

MLLN. 
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2.5 The asymptotic distributions of extremes — some examples  

The results that are contained in this and the following sections constitute the 

initial core of Statistical Extremes Theory and are the basis for many 

applications. So we will proceed at a slower pace, with considerable 

independence from what was said about the LLN. 

As has been said many times, the distribution of maxima and minima in 

a i.i.d. univariate sample           is given by                                                                               

      
 

   
 

               and        
 

   
 

                      ;  

for survival functions (which satisfy              we have 

      
 

   
 

                      and       
 

   
 

              . 

From these formulae we see that      and      play symmetrical roles 

for maxima and minima. 

In the case where      or      are known, we could proceed to a 

classical probabilistic and statistical analysis or, if     ) or      are known to 

be continuous, symmetrical, etc., in some cases we could have recourse to 

non-parametric methods. But, in many cases we do not even know if the 

observations come from some known parametric family of distributions and, 

in general, we are not under the i.i.d. hypothesis. So we have to resort, in 

practical applications, to asymptotic results of the type: if for some         

attraction coefficients           exist such that            
 
→    , with 

     continuous (and so uniform convergence), as             is close to 

     we will take   
    

  
  as an approximation to               not being 

necessarily         to allow for a better fit in statistical analysis. It must be 

said, at this preliminary stage, that the i.i.d conditions are not essential and 

can be weakened — as a rule the margins of the sequence             should 

not be very different and the correlation/association between    and    must 

wane out as the distance between   and   increases; two examples will shed 

some light on this question. 
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As the relation  
 

   
 

       
 

   
 

      is true we can deal only with 

maxima or with minima and translate the results if necessary; we will deal, 

almost always, with maxima. 

Thus, our purpose now is to obtain limiting (proper and non-

degenerate) distributions of              When the asymptotic or limiting 

distributions were degenerate — Laws of Large Numbers — the three 

previous examples (5., 6. and 7.) correspond to the three possible limiting 

distributions and the last one to a case where there does not exist a limiting 

distribution, as we shall see later. Let us say, as will be shown in the next 

section, that if  ̃    is a possible limiting distribution for maxima then 

         ̃      is a possible limiting distribution for minima; but that the 

same distribution can‘t have the corresponding distributions    and   ̃ , as seen 

in some examples below; also it can happen that one of     or  ̃ does not exist 

but the other one exists or, even, that both do not exist. Let us finally recall 

that          are not uniquely defined: by Khintchine‘s convergence of types 

theorem,          and (   
    

 )  such that    
        →   and   

    →

                  as  →  , lead to limiting distributions of 

the same type, respectively      and         (and conversely), the sets 

    
    

    being thus equivalent for limiting purposes; in many cases we have 

    and      the total equivalence. For Khintchine‘s convergence of 

types theorem see the Annex 2 to Part 1. 

A calculation facility is convenient: as for maxima            
 
→  ̃     is equivalent to               →      ̃     , as           →   

if    ̃       and 
     

   
→       →  , the convergence relation        

     
 
→  ̃    is equivalent to   (            ) →        ̃   ; also 

                
 

 
→        is equivalent, as           →

                 →                in the region              Those 

equivalent convergence relations (which are not uniform)  (  

          ) →        ̃     and              →                are very 

convenient for calculations; corresponding relations can be written for 

survival functions. 
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The three reduced limiting distributions for maxima        are 

                   if     with            if    (Weibull 

distribution),               (Gumbel distribution) and        if 

                            with     (Fréchet distribution); the 

corresponding distributions for minima        are                  

                  and          with the same denominations. 

Notice that the following stability equations will be shown:  ̃          

      and                    for convenient         . Note that       

      are, in both cases, also attraction coefficients by Khintchine‘s 

convergence of types theorem; this is left as exercise. 

We will now give some examples that lead to some of the distributions 

above: note that each of  ̃     or of        is a limiting distribution for itself, as 

will be seen in some examples. All these examples will have a full 

justification in the next sections. 

1. Take           Then                         
                      when          and      and so 

 ̃               is thus stable for maxima. Recall, once more, that 

equivalent coefficients could be used; in general, we will try the simpler 

and more manageable ones. 

Suppose we are now dealing with minima of Gumbel distribution, we 

should have              →                  and it is easy to see 

that if                         ⁄         (       

     )
 
 →          . What is important is the behaviour of the right 

tail for maxima and the left tail for minima, and they can be very 

different which is not the case: note that for     the ratio of the right 

tail to the left one is                →       →   ; only when 

this ratio is   the distribution would be the pair  ̃    and           

 ̃      if the limit of the ratio is           then  ̃ and    would be 

connected in the same way apart from a power transformation. 

2. Consider the exponential distribution:                 where 

                      –     if     . As            
 
→  ̃    

is equivalent to     –              →      ̃     , we must have 
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       –   →        ̃    when          ; a solution is    
               ̃           

As far as minima are concerned, we should have                →
          ̃      for          ; taking             we get 

 ̃               and the exponential distribution is stable for 

minima. 

3. Take now the Pareto distribution:        if             
             with      To have            →  ̃    , we must 

have  (            )            
  →       ̃   when 

          ; a solution is              and the limiting 

distribution is  ̃         . 

For minima we must have     
 

          
 →                  when 

           if we take               we get            

     , the exponential distribution, which is a Weibull form for 

minima and not a Fréchet one. 

4. When we consider the uniform distribution in                   
                   and        if    , the condition is 

            →          ̃      when            ; taking 

     and        we get  ̃                           
          i.e., the Weibull distribution for maxima. 

For minima we should have            →                 when 

            which is obtained with              and 

             the Weibull distribution for minima. Here situations are 

in correspondence because the uniform distribution is symmetrical 

about the mid-point 1/2. 

We could study more cases of classical distributions but it does not 

seem necessary except for the normal, the logistic being a simple 

exercise. As seen,          were given with a hint about the way we 

could have arrived at them; the standard techniques will be explained in 

the next section. 

5. Consider now the standard normal distribution function     . It can be 

shown very easily, using the attraction conditions to be given later, that 

the possible limits of             cannot be either       or        
Weibull and Fréchet distributions. We should thus have, if the limit 
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exists,            →      or                 →      where as 

known            →   and thus        →      

A very well-known result is that        
     

 
 when  →    and 

thus the previous condition is equivalent to  

                                    →   as  →    

or  

          √   
 

 
         

                       

dividing by     , we also see that  
          

       
→   as  

            

          
→    

and thus                             →   and so         

      
  

 
                   . Substituting above          

      we get  

         
             

 

 
        

 

 
                 

            
  

 

 
         

 

 
         

    
    

 

    
     

        √          
  

 
        

 
        

     
   

 

    
   

and thus we can take 

   √        
             

     
  √      

             

 √     
    

       
 

√     
   

The computation is easy, although tedious. But the verification is 

simple using √       →   .  
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6. Let us study the last distribution function considered in the previous 

section:                        
 

     
          

By the attraction conditions to be given later, it is immediately 

excluded that, for some           
           would converge to 

              ; the exclusion of       as a possible limit comes from 

the fact  ̅    ; the other exclusion is almost as easy. 

Let us show, directly, that             cannot converge (weakly) to 

      or, equivalently, that                  does not converge to 

                If it did converge we would have           →   

and so it is sufficient to study the function in the right tail: we should 

thus have  
 

             
→                 or  

            

 
→     

For     we have  
     

 
→   and so   →    and      ultimately. 

Then we would have  
            

 
 

                          

 
→    or 

 

 
                  →      . Let       be one of the possible 

limits of          : using the subsequence of     such that      →   if 

     we get 
 

 
                →       ; suppose now 

      and      then  
                  

                
 
               

 
→      is 

impossible. Thus if        if                     if     , it 

does not exist          such that            has a proper and non-

degenerate limiting distribution. For minima we should have        

     →                or equivalently  (  
 

            
) →

               and so 
 

            
→    or        →  . Let us take 

     and       : we get  (  
 

           
)  

            

             
→   

    (       )   

This shows that we have                    , which is the 

exponential distribution, an Weibull distribution for minima with 
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7. Let us now consider, finally, an example that shows how misleading 

some intuitive approximations can be. Consider the geometric or Pascal 

distribution                             if    . We could 

expect that      would behave practically like the exponential 

distribution to which it is very similar, say a discretized version. As 

 ̅     we can exclude the Weibull distribution as a limit; by other 

conditions below we can exclude the Fréchet distribution as a limit. We 

still have the Gumbel distribution as a possible limit which we could 

expect to be the one as happens with exponential distribution. 

The condition                →    is equivalent, to 

              →     or                →  . If this happens we 

will show that       , defining uniquely      which is impossible by 

Khintchine‘s theorem. In fact, for     we also get           →   

and so   →    , as could be expected. By subtraction we get        
           →  ; denoting by            the fractional part of  , 

the previous relation can be written                           →

  and with     (to simplify) we get     
                

 
→  . As 

              for   fixed,       fixed and        we have 

    
 

 
          

 

 
 and letting  →  , we obtain finally 

      , a unique result that is impossible so rejecting the Gumbel 

limit. But let us go further in the analysis. Accepting        we 

should have then                →   as  →         Suppose we 

fix     such that           : we have                  

and              when        and        when 

           and so               has as possible limits   

and    , showing, once more, that a Pascal distribution cannot have, 

for maxima, a Gumbel distribution as a limit. 

8. Also a Poisson distribution does not have a limiting distribution for 

maxima. 

9. In principle all lattice distributions, i.e., discrete distributions with 

successive jumps at equal steps, can be dealt with by the use of a 

theorem of Gnedenko (1943) and in a simpler way. We have used those 

elementary proofs to clarify the issue from the start.  

Let us now give two simple examples showing that i.i.d. conditions can 

be weakened. 
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Take a random i.i.d. sequence              where each random 

variable has the distribution function      and that 
 

   
 

      has a limiting 

distribution       (as said before    can only be          apart from location-

dispersion parameters), i.e., there exist attraction coefficients            

such that            
 
→  ̃   . Now define the new dependent sequence 

   
                        . We have 

  
           

 
   
 

    
            

   
   
 

                  and thus 

  
          

       is a system of attraction coefficients for the new 

(dependent) sequence leading to the same limiting distribution  ̃      We 

could also use the coefficients          by Khintchine‘s theorem as said 

before. 

As concrete examples for  
 

   
 

   
   consider the cases where      is 

one of the three limiting distributions: 

1. if        we have the stability relation 

  
       ( 

      )   
 (       )         so we can take      

and          and thus we can use   
       and   

     

        

2. if           we have the stability equation        
                        ; so we can take              and 

thus we can use   
                

         

3. if            we have the stability equation   
         

        

and so   
 (      )          so we can take              ; and 

thus we can also use   
         

    .  

Let us note that this is a special case of 1-dependence as   
  

              and   
                   are dependent but   

  

              and   
         

        are independent if        ; all the 

cases of  -dependence                                    lead to the 

same situation. 
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Let us now consider the weakening of the identical distributions 

condition. Consider a sequence      of i.i.d. random variables with 

distribution function      and such that 

      
 

    
 

                           →  ̃          →  . 

Define the new independent, but not identically distributed, sequence    
   by 

the equation 

  
          . 

Let   
           

 
   
 

   
     . We have for the distribution of 

 
   
 

    
  : 

for           
                                       

     {                }                  

                     
                       . 

Do we have coefficients    
     

   such that   
     

    
     converges to 

a limiting distribution function, possibly to  ̃        This is a special case of a 

problem (periodic disturbances, dealt with in the last section) where we 

alternately add or subtract 1, and can be studied directly. We leave it to the 

reader. 

For simplicity of the example‒but where all the ingredients are present‒

we will study only the cases where       ̃     i.e., where      is 

                        and we intend to obtain  ̃    as a limit. 

Consider the case where            . As is known,      and 

         i.e., the stability equation takes the form   
          

      . We 

will compute, separately, (   
      

 ) and (     
        

 )  such that   
    

  

  
    →                             Let us note that  ̅  

     ̅    
  

    and so the right-end point of 
 

   
 

   
   is   for    . For       if we 

take   
    and   

           and if for        we take the same 
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expressions, we get   
    

    
    →      . In general we have   

       
  

          . Another proof of the result can be given by showing that    
      

and       
     both are equivalent for maxima to   

       see the next chapter. 

This is left as an exercise as well as for the immediate examples. 

When           we have         and      as seen. The 

relation   
    

    
    →     gives a solution    

      
     

 
 

        
   . 

For Fréchet distribution,            we have    
    and   

       

and also    
    and   

       . 

In all cases, the coefficients can be the same owing to the special 

(limiting) form of        ̃      

2.6 The asymptotic distributions of extremes 

After these examples — where, for instance, logistic distribution, Cauchy 

distribution and other ‗textbook‘ distribution have not been dealt with here for 

reasons to be seen shortly — we will proceed to obtain the limiting 

distributions of maxima from i.i.d. samples  ̃     which, as was said before, 

are                        

We say that a random sequence      of i.i.d. random variables with 

distribution function      is attracted for maxima to  ̃    if there exist 

coefficients            — already called attraction coefficients (for 

maxima) and not uniquely defined — such that            
 
→ ̃   . As the 

limiting distributions are continuous the convergence is uniform, as is well 

known. We will say also that      is in the domain of attraction of  ̃    

which will be denoted by     ( ̃)   Correspondingly we will say that      

is stable for maxima (or max-stable) if                   for convenient 

   and     . Evidently                      are max-stable with 

                           and                It is 

immediate that if      is max-stable,      is a limiting distribution or is 

attracted to       in fact if we take            and         we obtain 

                 and the convergence is verified. The crux of the proof 
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is to show, in reverse, that the limiting distributions are max-stable, to solve 

the corresponding functional equation, and to obtain one (or more) systems of 

attraction coefficients. 

The conversion of these definitions for minima is immediate and can be 

done in terms of either      or of the survival function       

We will continue, out of habit, to use    ), the conversion to      being 

the reproduction of the previous definitions, but with the introduction of some 

additional notation which would not be used in the sequel; but this is an 

interesting exercise because it stresses the duality. 

We say that      is attracted for minima to       or is in the domain of 

a attraction of         denoted by          (the symbol    does not introduce 

ambiguity because of the context and of the pair of dual symbols  ̃ and   ) if 

there exist attraction coefficients (for minima)                 not uniquely 

defined, such that                 
 

 
→          as said, and to be shown, 

the limiting       are                   and           The stability 

relation is either                         or, using survival 

functions,                   We say that          is stable for minima (or 

min-stable) if the last relation hold. There is no difference in the definitions, 

arising from            . An exercise is to compute the expressions of 

         for min-stability. It is also evident that min-stable distribution (or 

survival functions) is also limiting ones. The result comes from the solution 

obtained for maxima. 

Let us, then, study maxima. We will show that: 

The limiting distributions of maxima are max-stable. 

In fact, suppose that there exist                such that       

     
 
→ ̃    Then we have               

 
→ ̃    also, and 

thus               →  ̃       . Let   
    

    be a limit of a 

subsequence of            →   
         →   

  , as  →   through the 

subsequence; then by Khintchine‘s theorem we have              →

 ̃(  
    

   )   ̃       or putting       
    

    ; we get the stability 

equation 



Statistical Theory of Extremes, 11- 44, 2017 (Online Edition).                  J. Tiago de Oliveira  

32 

 

  ̃       ̃   
  

 

  
  

 

  
      ̃           

and the result is independent of the subsequence. Notice that          can be 

defined by                     and               when   →

  . 

Thus we now have to solve the stability functional equation. The first 

step is to extend for any positive real   the stability equation, i.e., that there 

exist                      such that  ̃      ̃               

When  →    we have                     
 
→  ̃    and as       →   

also, we have 

[  (             )]
 
→  ̃     

consequently               and           converge as  →   . Let us 

define               as 

          (        )        and                     

we get, as desired,  ̃       ̃               which shows the continuity of 

 ̃    . 

To solve this functional equation we must know that the functional 

equation                          has the solution        or         

(*). 

Then the relation 

 ̃       ̃                  ̃          ̃               

 

(*) — This is true for      continuous, monotonic or measurable; we will prove it for 

the continuous case. If        the theorem is proved. Suppose that there exists 

       such that         and, thus,       . Then for     
            

     we 

get     
        

  and as     
   

      
   

        
    we see that for every 

rational     we have     
        

 . But the positive rationals are dense in the 

positive reals and as      is continuous, we get     
         

 . Putting   
    we get 

          
           and putting      

            we get         as could be 

expected. 
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  ̃                         

which exchanging   and   is equal to  ̃                        . This 

leads to the equation  

                                    

                 . 

The second equation can have the solution        or        . But 

       leads to  ̃      ̃        and should be disregarded. 

We have, then, as         the relations                      , 

And here, we can have two cases:     or      . 

If     we get                 and so       satisfies the equation 

for     ; then             and the functional equation reads as  ̃     

 ̃           whose solution is 

 ̃                ⁄           ̃       which is a Gumbel distribution 

when    . For     the solution is not a distribution function. 

Suppose now that     . Then we have                ) we have 

             
    

     
    

       and so we have the equation  ̃     

 ̃              . 

Consider that    . For  →   we get    ̃    but for no    

      ̃       because otherwise we would have  ̃        ̃      

 ̃             which for     
   

    
   (implying      would lead to 

 ̃      ̃      for any  ; this shows that   is the right-end point. Let us 

put          . We get  ̃        ̃        . Put  ̃      

       where      is continuous and non-increasing from     to   in 

       . We get, for    , 

                                       and thus 

 ̃      for     
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 ̃     ̃                                  
 

which is a Weibull distribution with location parameter        with 

probability 1), dispersion parameter        , and shape parameter    . 

If we are dealing with the case     , when we take  →     we get 

   ̃    and so   is the left-end point of  ̃   . 

Put also          : the equation reads as  ̃       ̃   

    . Now put  ̃             . The equation gives               and 

analogously                and thus 

 ̃              

 ̃     ̃                                 
 

which is a Fréchet distribution with left-end point  , dispersion parameter 

      , and shape coefficient    . We have thus proved that the classes of 

max-stable and limiting distributions for maxima coincide; the changes of the 

location-dispersion parameters are integrated in the type (or equivalence) 

changes. 

Note that, by the proof given above connected with the stability 

equation, we have shown that             
 
→  ̃            integer, and 

            
 
→  ̃           real, are equivalent and this will be used 

sometimes later. 

Notice that the  ̃ are continuous and, consequently, the convergence is 

uniform. 

For minima, let                                      in 

the continuity set of    . 

We have          
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                 and if              →  ̃    we get  

       
 

   
 

               →    ̃         ̃    is continuous. 

 ̃ is thus associated with the limiting distribution, if it exists, of       

and not of     . The set of limiting distribution functions for minima is the 

one already described. 

Another proof could be obtained using the survival functions, which is 

left as an exercise. 

We have then proved the Extremal Limit Theorem: 

The reduced asymptotic distributions of maxima   ̃   , when they exist, 

are                      and the reduced asymptotic distribution of 

minima         when they exist are                               . 

Notice that the right-tail behaviour of       defining the maxima of 

      corresponds to the left-tail behaviour of      corresponding to the 

minima. 

Consider a distribution function (proper and non-degenerate) and a 

sequence of real numbers      such that           →   or  (  

     )                  ; the    are, evidently, a function of   and 

a functional of  . 

It is immediate that, if      are i.i.d. with distribution function  , 

then        
 

   
 

                    
 (      )

 
  →         →  ; 

the inverse is also valid as seen by taking logarithms; the case       is 

dealt with analogously. The connection between the changing (non-decreasing 

in general) levels for overpassing and the previous results corresponds for 

instance to taking                  and         etc. Note that    does 

not necessarily exist; for        if    ,          if        and 
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       for     (a jump of     at      we see that for      we can 

take neither       because we would get  (       )     nor      

 , because for          →   we should have taken        
        

 
. 

Also if              for             for     , it is easy to see that 

for no      we can obtain           →  , as             is oscillating. 

But for        if           ⁄    if     , we get           .  

The classical theory already developed used            with   

depending on  , giving the desired results when                  

                     In some cases we can transform       into an 

equivalent linear function of                             , but other cases 

exist, like the last example in the previous paragraph, where such a 

transformation for a linear function cannot be made. 

Finally let us speak of a general form that integrates in one expression 

the three limiting distributions of maxima, called von Mises-Jenkinson 

formula:  

                      
    

     real, i.e.,  

                              real, 

where         with the natural truncation when              

              we have          and if     for        we have 

        . 

If     we have immediately                        where 

        ; if     we have                        where 

        and finally we have                     . 

The graphics of the densities of          for maxima, are given in 

Figure 2.1. They will be given for each form in the Chapters 5, 6 and 7 (for 

minima). 
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Figure 2.1 Graphs of the densities         

The graphs of the densities for minima         (Figure 2.1) are the 

miror images of the previous ones.  

It should be noted that when  →   the graphs of         converge to 

             ; this corresponds to the fact that for large       Fréchet 

and Weibull distributions are very close to the Gumbel distribution. 

This integrated formula will be useful for the statistical choice of 

models in Chapter 8. 

The basic texts are Fisher and Tippet (1928), Fréchet (1927), de Finetti 

(1932), Gumbel (1935), von Mises (1936) and Gnedenko (1943); exposés can 

be found in Galambos (1978) and de Haan (1976). 

It is of interest to consider the joint behaviour of  
 

   
 

      
 

   
 

        

Its joint distribution function is 

      
 

   
 

        
 

   
 

         

       
 

   
 

                
 

   
 

         

                           

Supposing that 



Statistical Theory of Extremes, 11- 44, 2017 (Online Edition).                  J. Tiago de Oliveira  

38 

 

      
 

   
 

        
    

              
    

      →  ̃      

and 

      
 

   
 

                           →  ̃     

we get  

      
 

   
 

        
    

    
 

   
 

                

                                  
                 

 . 

The first summand converges to  ̃     Let us thus study the second one 

which can be written as  

              
        

    
             

           
   

As the first factor converges to  ̃     denote by          the limit of the 

second factor. We have, if         exists, 

      
 

   
 

        
    

    
 

   
 

              →  ̃     

But                 
          

    
              

          
    

          
           

    
              

          
  

As said before           →   for   in the support of  ̃     on the 

other hand we know that for         in the supports of       and  ̃      
  

  
   →              →  ̅ and for large   we have   

    
            

and, thus, we get 
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            [    (       )]    

        

and so  

       
 

   
 

        
    

    
 

   
 

              →        ̃      

Consequently the reduced extremes are asymptotically independent (in 

the sense defined in the proof). For more details on asymptotic independence 

of sample extremes see Geffroy (1958). 

From asymptotic independence, it is evident that the distributions of the 

reduced range, centre, and absolute maximum depend only on the prevailing 

reduced extremes. If they are of the corresponding asymptotic form their 

distributions are, for large samples, those of 

    
 

 
                    

Similarly it was proved by Rosengard (1962, 1966), Tiago de Oliveira 

(1961), and Rossberg (1963, 1965), that the sample extremes and mean, under 

very general conditions, are asymptotically independent. 

2.7 The asymptotic distributions of the m-th extremes 

The asymptotic theory of m-th extremes was, essentially, initiated in a paper 

by Gumbel (1935). 

Consider a sequence of i.i.d. random variables      with distribution 

function      and suppose that 

      
 

   
 

                          →  ̃      

Let us see what happens to the m-th order maximum       
    

  in 

the notation of Chapter 1. 

We have             {  
   }                    
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∑  
 
 
 

 

     

                 ∑ 
 

   
 

   

   

                 

and so 

             →  ̃        ∑  
 

   
         

               

           
   

  ̃   ∑
(     ̃   )

 

   
            

            →  ̃           and 

 
 

   
               

   
 
 
                

  

 
                             

 

   
                  

       

and as seen before  (             ) →       ̃    as  →     Evidently 

 ̃      ̃     

Analogously we can obtain the distribution of the m-th minimum: 

suppose that                 
 →              or equivalently that 

            →                 

Then  

    
         {  

   }        {  
   }  

   ∑ 
 
 
   

   

   

               

and consequently  

    
              ∑ 

 
 
   

   

   

                        
     

But                
   →               and 
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→   

→  
             

   
             and we get 

         (        ) ∑ 
    (       )

   

   

   

    

Using the survival function               we get 

              ∑  
         

   
   
          

dual of the expression for         evidently             . 

To compute        and       from the three possible expressions of 

       and        is a simple exercise. 

In what has been said we have always supposed that we were dealing 

with the m-th maximum or m-th minimum, with   fixed. We can even allow 

  to be a function      such that       →   as  →    and obtain similar 

results: see Smirnov (1952) as the first step, and Mejzler (1984) for the 

general overview. 

We will not develop this points further because it does not seem to be 

particularly interesting. 

Let us now recall that maxima in between themselves and minima in 

between themselves are associated; but, as shown the maximum and the 

minimum of a sample are asymptotically independent; a m1-th maximum and 

a m2-th minimum are also asymptotically independent by a simple extension 

of the proof. 

2.8 An overview of some extensions 

Here we will sketch, briefly, without proof, results extending the three 

limiting distributions under conditions which are not i.i.d., for which we have 

given already some examples. 

If the identically distributed condition is relaxed, but independence is 

maintained, the initial papers of Juncosa (1948) and Mejzler (1949), detailed 
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in Mejzler (1984), have shown that under general reasonable conditions, the 

three limiting distributions are still valid. But this is not completely general: 

as a counter-example, take any distributions function      and consider the 

sequence of independent random variables      with distribution functions 

             
  
  It is immediate that 

                      
 
 
 
                  

→                  as 

 →  , with a system of attraction coefficients           . Thus any 

distribution function can be the limiting distribution function of max 

          and so some moderate condition about the set of         must be 

introduced to maintain the classical limiting distribution of maxima (and 

minima, obviously). See the above-mentioned papers for more details and in 

the case where               with         (periodic disturbances of 

period P), see Tiago de Oliveira (1976). 

Also if the independence condition is lifted, but i.d. margins are 

maintained, the asymptotic distribution of maxima may be different from the 

three given forms. As a counter example take the sequence              

i.i.d. with a standard normal distribution function and define  

   √     √                       

The    are multinormal with standard margins and (constant) 

correlation coefficient         

Then 

 
    
 

    √     √    
 

    
 

    

and, as by the ALLN we have 
 

    
 

    √     
 
→ , we see that 

  

 
    

 
    √    √      

√ 
    

 
→  
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and so 

       
 

   
 

    √    √      √    →        

This example suggests that the correlation in dependent sequences must 

be waning out at a reasonable rate to obtain the classical limiting forms for 

maxima. 

The case where we deal with a random (dependent) sequence with the 

same marginal distributions        — i.e., stationarity of order 1 — and 

where the sequence of maxima is attracted by the same distribution as the 

i.i.d. sequence with the same distributions     , has been initially considered 

by Watson (1954) and Newell (1964) for the case of m-dependence, i.e., 

        independent if           and later by others — this point will be 

developed in Part 4; see references therein. 

The application to Meteorology and Oceanography of m-dependence is 

obvious as after a few days (2 or 3) there is practical independence for the 

observations. 

For a relaxing of both i. and i.d. conditions, but having yet one of the 

limiting distributions, see Tiago de Oliveira (1978). 
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