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Abstract

Article history

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high
expensive satellite remote sensing, manned aerial surveys, and labors time consuming
conventional fieldwork techniques of data collection. UAS can provide spatial data at
very fine (up to a few mm) and desirable temporal resolution. Several studies have
used vegetation indices (VIs) calculated from UAS based on optical- and MSS-
datasets to model the biophysical parameters of the Earth surface. They have used
different techniques of estimations, predictions and classifications. However, these
results vary according to used datasets and techniques and appear very site-specific.
These existing approaches aren’t optimal and applicable for all cases and need to be
tested according to sensor category and different geophysical environmental
conditions for global applications. UAS remote sensing is a challenging and
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interesting area of research for sustainable land management.
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1 INTRODUCTION

Unmanned Aerial Systems (UAS) have been widely
used in many applications such as vegetation monitoring
(Merza and Chapman, 2011); agriculture (Walsh et al.,
2018; Marino and  Alvino, 2019), hydro-
geomorphological assessments (Casado et al., 2016),
hydrology, water conservation, water quality analysis
(Koparan et al., 2019), river characterization (Casado et
al.,, 2016; Larrinaga and Brotons, 2019), soil
management (Oliveira et al., 2019), urban mapping
(Noor et al., 2018), disaster management (Yang et al.,
2016; Carvajal-Ramirez et al., 2019) including post-fire
vegetation analysis (Fernandez-Guisuraga et al., 2018).
At present, satellite based remote sensing has limitations
such as resolutions, availability including frequency and
flexibility, complicated image processing, higher costs
etc. (Zhang and Kovacs, 2012; Wan et al., 2018)
whereas ground-based sensor systems have issues
related to mobility (moving one place to another), cost-

effectiveness and real time mapping (Zhang and Kovacs,
2012; Sankaran et al., 2015; Caturegli et al., 2019).
However, UAS based techniques are useful for survey
of relatively smaller area, but for efficient work it needs
to be larger than 5 hectors (Wahab et al., 2018). UAS is
more efficient tool to bridge the gap between- 1) high
expensive satellite and manned areal remote sensing and
2) labors and time-consuming conventional fieldwork
techniques of data collection for environmental
planning, management and monitoring (Wahab et al.,
2018).

The market revenue of UAS based remote sensing
and mapping is booming since last decade (Colomina
and Molina, 2014; Barbedo, 2019). At the same time
scientific community and industry have remarkably
involved with publications and production of essential
equipment (Colomina and Molina, 2014). Many
conferences/meetings were organized in this period and
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volumes were published by reputed organizations and
publishers (Colomina and Molina, 2014). Many
commercial, non-profit organizations and governmental
agencies are involved and have invested their energies
for research, development and applications of the UAS
techniques.

Popular terms observed for this technique are
Remotely-Piloted Aerial Systems (RPAS), ‘Unmanned
Aerial Vehicle’ (UAV), ‘aerial robot’, ‘drone’
(Colomina and Molina, 2014), etc. International Civil
Aviation Organization (ICAO) has coined the term
RPAS and integrated this technology into ‘international
civil aviation system’ (ICAO, 2011). UAS includes: 1)
unmanned aircraft (UA), 2) a Ground Control Station
(GCS) and 3) a communication data links (Colomina
and Molina, 2014). 1) Aircraft trajectory: waypoints,
strips, speed, attitude, etc. and 2) mission management:
sensor  configuration, triggering events, flying
directions, etc. are important aspects during the mission.
Micro- and mini- UAS vehicles are very sensitive to
winds therefore 80% forward and 60-80% cross overlap
are suggested to compensate errors occurred due to
aircraft instability (Colomina and Molina, 2014). Four
types of UAS are parachutes, blimps, rotocopters, and
fixed wing systems (Sankaran et al., 2015). Further,
stable imaging platforms have been suggested as
solution to the problem of wind induced instability in
UAV (Yang et al., 2016).

Colomina and Molina (2014) have explained
different aspects of UAS: recent unmanned aircraft,
navigation, sensing techniques, data processing
techniques and photogrammetry. Novelties of the
technique are very high resolution (centimeter level),
low-cost equipment, powerful, sophisticated computer
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vision, robotics and geomatic engineering (Colomina
and Molina, 2014; Gracia-Romero et al., 2019;
Caturegli et al., 2019). Therefore, the advances of the
technique are: 1) cost-effective: low weight, slow flight,
speed and extended range, (Casado et al., 2016), 2), less
fuel (Casado et al., 2016), 3), timely and on-demand
data (Casado et al., 2016) and 4) safety mission (Casado
et al. 2016). UAS can capture images even in cloudy
conditions (Casado et al., 2016). This technique is more
useful for large-scale low-altitude imaging and
geospatial information (Colomina and Molina, 2014) for
policy makers, regulatory bodies and mapping
authorities.

UAS applications are detection and quantification
of stress plants, prediction of vyield, estimations of
biomass and canopy cover, classifications of vegetation,
assessment of plant heights, etc. (Barbedo, 2019;
Oliveira et al., 2019; Durfee et al., 2019). Vegetation
indices (VIs) show significant relationship with
disparities in ground cover (Schut et al., 2018) including
vegetation, soil characteristics (Oliveira et al., 2019),
barren and impervious surfaces, water bodies etc. VIs
are widely used for analysis of 1) precision agriculture:
analysis of crop performance (Buchaillot et al., 2016;
Marino and Alvino, 2019; Gracia-Romero et al., 2019),
diseased crops/plants (Sandino et al., 2018; Javan et al.,
2019), plant nutrients (Walsh et al., 2018), plant
phenology (Park et al., 2019), plant height (Fathipoor et
al., 2019), 2) preparation of DEM (Themistocleous,
2019), 3) management of covered soils (Oliveira et al.,
2019), etc. Durfee et al. (2019) have used Vis for
assessing the green cover at watershed level. Carvajal-
Ramirez et al. (2019) have calculated fire severity
indices for pre- and post-fire situations using MSS
imageries captured by UAS.

Table 1. Types of Unmanned Aerial System

UAS types Advantages Limitations
Parachutes Fly in calm condition (no wind). Can operate in windy condition.
Low speed and short flight time.
Blimps Useful for area imaging. Unable to fly in windy condition.
Capture clear optical images.
Longer coverage of capture.
Rotocopters Widely used type for UAS. Low speed and short flight time.

Fly at different altitudes (four to eight

propellers).
GPS-based navigation.
Fly horizontally and vertically.

Take-off and landing over very little space.
Thermal, multispectral to hyperspectral sensor.

Fixed wing systems
Waypoint navigation
Multiple sensors

More speed and longer flight time.

Limited hovering capabilities.
Image blurring due to higher travel speed
than the sensor.

Modified after Sankaran et al., 2015.
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Walsh et al. (2018) have calculated Vs for Spring
wheat thorough growing stages using UAS images and
found positive significant relationship  between
calculated VIs values and measured plant nutrients.
Javan et al. (2019) have successfully used UAV based
VIs for detection and mapping of diseased Citrus plants.
Buchaillot et al. (2016) have analyzed Maize
performance in low nitrogen condition using VIs
calculated based on UAS-MSS data in Zimbabwe.
Marino and Alvino (2019) have analyzed the abilities of
high resolution UAU images to detect the
spatiotemporal variability of wheat crop in Italy.
Caturegli et al. (2019) have analyzed the applicability of
NDVI [Normalized Difference Vegetation Index] and
DGCI [Dark Green Color Index] for detection of N
content in plant life for precision agricultural
management using UAS. Eng et al. (2018) and
Cermakova et al. (2019) have used the VARI (Visible
Atmospherically Resistant Index) for vegetation
analysis. Park et al. (2019) have using UAV based color
indices to quantify the leaf phenology of trees and
species in tropical forest. Marcial-Pablo et al. (2018)
have used VIs for estimations of vegetation fractions
using UAV-RGB images. Therefore, UAS based VIs are
very useful for analysis of plant nutrients, variability in
crop performance, vegetation analysis, etc.

Researchers have used different methods and
techniques for analysis of ground surface using VIs
calculated from UAS based data. Yeom et al. (2019)
have compered the plant growth pattern for conventional
tillage (CT) and no-tillage (NT) agricultural lands using
UAS based VIs. Wahab et al. (2018) have UAV based
GNDVI to assess the growing stage wise vigor and
yields of maize crops in Sub-Saharan Africa. Jiang et al
(2019) have used UAV based VIs for estimation of
above ground biomass (AGB) with TIN [Triangulated
Irregular Network] based structure and metrological
data. Fathipoor et al. (2019) have combined VIs with
plant height estimated using UAV based DEM for crop
yield prediction. Further, Niu et al. (2019) have
compared VIs indices and point cloud-based plant
height estimated using UAV-RGB images for estimation
of AGB of maize crops. Oliveira et al. (2019) have
successfully used and suggested Random Forest (RF)
calculated from UAV based RGB and hyperspectral data
for estimation and mapping of biomass production from
grasses. Themistocleous (2019) has prepared DEM
using five VI. Thus, VIs calculated using UAV based
RGB and NIR data are used for planning and monitoring
the environmental issues.

Recently, some researchers have reviewed the
reported research on UAV technology (Xue and Su,
2017; Kadian and Khadanga, 2019; Asmaa et al., 2019
Guo et al.,, 2020), and its applications in agriculture
(Zhang and Kovacs, 2012; Barbedo, 2019), urban
planning (Noor et al., 2018), communication (Indu and
Singh, 2020), target tracking (Chen and Zhou), damage
mapping (Kerle et al. 2020), related regulations and
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politics (Srivastava et al., 2019). Further, Sankaran et al.
(2015) have analyzed research reports on application of
UAS-VIs for crop phenotyping. Xue and Su (2017) have
analyzed the applications of more than 100 VIs for
precision analysis of vegetation and environment.
Barbedo (2019) have reviewed applications of UAV and
imaging sensors for monitoring and assessing the plant
stresses. Thus, it shows limited efforts for analysis of
research published on applications of VIs from UAS
based datasets. Therefore, the present study focuses on
review of applications of VIs-UAS datasets for remote
sensing analysis. The analysis discussed in the paper can
be useful for preparation and application of UAS based
datasets for analysis of biophysical parameters of the
Earth surface for sustainable land management.

This article reviews the different aspects of UAS
based datasets including sensors, spatial resolutions and
techniques of data processing. Introductory section
reviews the background of the paper with aims and
objectives of the study and its applications. Section
‘data’ covers the types of sensor installed on the UAS
platforms and spatial resolution of the data. Third
section explains the techniques of data processing
including radiometric- and geometric corrections, geo-
referencing, image enhancement and classification
techniques used in the research that are reported in
different papers and articles. Last section discusses the
finding and applications of the technology with reported
limitations. The citations are listed at the end of the
paper and complied information is tabulated.

2 DATA
21

UAV-based remote sensing was beginning with small
range of spectral bands: Red, Green and Blue (RGB).
RGB images are powerful, low-coast and more practical
source of data for performance analysis and monitoring
crop cycles (Gracia-Romero et al., 2019; Beniaich et al.,
2019). Recently, these systems are updated with
multispectral (MSS) sensors with Red Edge (RE) and
NIR bands (Yeom et al., 2019) (Table 2). Therefore, Vs
developed for traditional RS can be calculated using this
data for various applications for agriculture
management, water resources management, urban
planning, forest management, etc. NIR found superior
than RGB for precise vegetation analysis using different
VIs (Yeom et al., 2019). Research have reported results
of UAV based crop performance analysis similar to data
captured using ground-based sensors (Gracia-Romero et
al., 2019). Marcial-Pablo et al. (2018) have reported
suitability of RGB based VIs for early season crop
monitoring whereas MSS data for later season analysis
of the crops. Further, Sandino et al. (2018) have used
UAV-based hyperspectral images for mapping of
Pathogens affected forest trees. Thus, UASs based RGB,
MSS and hyperspectral datasets are available for
analysis of biophysical parameters of the Earth surface
using VIs for sustainable land management.

Sensors
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Table 2. Unmanned Aerial System Sensors

Sensor Bands Spatial Authors Calibration
resolution
(cm) with
flying height
(m)
RGB R, G B 0.51 (20) to Yeom et al. (2019) Reflectance panel
0.84 (30) Niu et al. (2019) Camera dedicated to incident
0.94(50) Gracia-Romero et light sensor
5(97) al., (2019)
Marino and Alvino
(2019)
NIR RE and NIR 1.58 t0 1.69 Yeom et al. (2019) Ambient illumination sensor
(40)
G, Rand NIR 10(286)
RGB and R, G, B and NIR 3(100) Wahab et al. (2018);  Teflon calibration panel.
NIR Marino and Alvino
(2019)
MSS R, G, B, NIR, RE 1.2 (12) Javan et al. (2019) Mini MCA 6 sensor
Six bands (50 Guo et al. (2019)
suggested)
12 bands: RGB, RE 2.6 (120) Jiang et al. (2019) Empirical linear model.
and NIR
NDVI and RGB 5(90) Caturegli et al. UAYV based NDVI compared
(2019) with ground based NDVI.
Hyperspectral 274 bands Sandino et al. (2018)
RGB, MSSand RGB 3.26 (60) Vanegas et al. (2018)  Mica sense reflectance board
Hyperspectral MSS: B,G,RE and
NIR
Hyperspectral: 274
RGB RGB 2.02-3.0(40-  Durfee et al. (2019) Resolutions vary according to
MSS R, G, B, NIR, RE 50) the imagery and flying scheme.

2.2 Flying Time and Height

The flying time affects the sun light and angle, weather,
atmospheric  transference, plant phenology, etc.
therefore, someone can select flying time considering
these points. Lower sun angle gives higher contrast
between red and green bands (Larrinaga and Brotons,
2019). However, Larrinaga and Brotons (2019) didn’t
find remarkable difference in performance of greenness
indices calculated using data captured at different
altitude. However, cell statistics and selection of optimal
greenness index are depending on flying height of UAV.
Image resolution varies according to the flying height
(refer section 2.3: resolution) (Table 2). Therefore,
researchers and UAS managers should carefully record
the flying time and height arranged for RS data
capturing. However, Larrinaga and Brotons (2019) have
reported no-effect of flying heights (50 and 120m) on
modeling for estimations for post-fire regenerations of
Mediterranean forests.

2.3 Spatial Resolution

Traditionally, course resolution images captured using
standard remote sensing camera installed on manned
aircrafts have been used to meet requirements of small

object detections (Casado et al., 2016). UAS provides
data at fine resolution (finer than 1cm) with desired
temporal resolution (Sankaran et al., 2015). This
technology is very promising for management of
precision agriculture due to fine resolution. Finer spatial
and desired temporal resolution allows detecting the
plant growth patterns (Yeom et al., 2019), disease
effects (Javan et al., 2019), etc. Yeom et al. (2019) have
used data UAV based MSS images at resolution of 0.51
to 0.84 cm (RGB) and 1.58 to 1.69 cm (NIR) for
analysis of tillage effects in agriculture using VIs. Javan
et al. (2019) have used UAV MSS image at 2 cm
resolution for detection of greening disseized Citrus
trees in Iran. Niu et al. (2019) acquired the data at 0.8
cm resolution for estimation of AGB of Maize crop.
Caturegli et al., (2019) used UAV based images at 5 cm
for detection of N content in plant leaf using NDVI and
DGCI. Further, Casado et al. (2016) have used three
UAV resolutions: 2.5, 5 and 10cm for automated Hydro-
morphological characterization of 1.4 km river reach.
Resolution vary according to flying height and
suggested effective flying height is 50 m to capture the
UAYV based images (Guo et al., 2019). Oliveira et al.
(2019) have achieved 0.7 c¢cm and 5 cm ground
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resolution for photogrammetric and hyperspectral
imageries captured at 50 flying height. Buchaillot et al.
(2019) have used UAV RGB images of 0.03 cm/pixel
captured at same flying height (50m) for calculation of
VIs. Durfee et al. (2019) have achieved higher spatial
resolution for RGB images than the MSS. Thus, images
captured using UASs can give very finer resolution (less
than 1 cm e.g. 0.5 cm) which varies according to the
flying height of the UAV.

3  TECHNIQUES USED FOR REMOTE
SENSING OF LAND
3.1 Radiometric Corrections

Simply ground reflectance panel, ambient illumination
sensors and mean DN values calculated using white
reference were used for calibration of UAV based
sensing images (Yeom et al., 2019; Javan et al., 2019).
Yeom et al. (2019) have calibrated images using ground
reflectance panel and ambient illumination sensors for
frame to frame to characterization for precise
comparisons throughout day and growing season. Javan
et al. (2019) have used reflectance panel and mean DN
values calculated for values of images collected before
and after flight for all 5 bands (Javan et al., 2019). Guo
et al. (2019) have used three pseudo targets and four
boards radiometric calibration using handheld device
specially designed for spectral measurements. However,
calibration of images captured using UAV platforms is
quite difficult due to small FOC and different imaging
conditions for each image (Guo et al., 2019). Most of
time researchers are using UAV based images without
calibration or with coarse calibrations (Guo et al., 2019).
Therefore, Guo et al. (2019) have used linear regression
model for calibration of UAV based MSS images
captured at different height for vegetation analysis using
VIs. They have reported that atmospheric distortions
appear more in images with increasing platform height
and suggested universal calibration equation and LRM
for images acquired sunny, little cloudy and cloudy
weather. RGB images preferred for cost-effective
operations without calibration systems. Therefore, they
need to be calibrated using reflectance panels (Yeom et
al., 2019). Linear calibration model was found useful to
calibrate the image digital numbers with corresponding
ground reflectance values (Yeom et al., 2019).

Normalized RGB bands (equations (1, 2 and 3))
were used before calculation of VIs in many research
projects (Beniaich et al., 2019; Li et al., 2019; Yeom et
al., 2019, etc.). However, many studies have used RGB
data without this normalization for different applications
like crop yield (Wahab et al., 2018). Further, Larrinaga
and Brotons (2019) have used normalized ‘G’ as GCC
[green chromatic coordinate] for calculation and
successfully used for estimations of post fire
regeneration of forests with higher accuracy than ExGI.

Researchers have used band conversions for
specific studies using UAV data. Technique suggested
by Karcher and Richardson (2013) was used for

63

V. S. Bhagat et al.

conversion of RGB pixel values into HSB [Hue,
Saturation and Brightness] values for analysis of leaf
nitrogen status (Caturegli et al., 2019). DN values were
transformed to surface reflectance using empirical linear
model using six nominal reflectance values to calculate
the canopy surface of Rice crop (Jiang et al., 2019).
Ribeiro-Gomes et al. (2017) have calibrated thermal
cameras using a blackbody source Hyperion R Model
982 for UAV application of agriculture. Thus, some of
them have used different models and techniques for
radiometric calibration of UAV base RS datasets.

3.2

Image clarity and analytical preciseness are fully relied
on geo-referencing of image captured using multi-lens
sensors (Javan et al., 2019). Distortions in color
presentation increase with increasing number of pixels
as error in registration. Ortho-mosaic image generation
based geo-referencing of captured images has been used
to achieve acceptable error (Javan et al., 2019). Javan et
al. (2019) have accepted error less than pixel size (0.6).
Locational information (latitude, longitude and height)
of Ground Control Points (GCP) was commonly used to
achieve geometric accuracy of UAV based images
(Vanegas et al., 2018; Guo et al., 2019). Wahab et al.
(2018) have used 4 x 4 subplots for geo-referencing the
images in GIS environment. Vanegas et al. (2018) have
used Geoscience Australia online service selection of
precise (3cm accuracy) GPS points instead of GPS
information with course accuracy (5 to 10 m). Internal
navigation systems with GPS are helpful to solve the
problem of geo-referencing of RS images (Lulla et al.,
2004). Further, Masiero et al. (2017) have used low cost
Ultra-Wide-Band (UWB) system for direct geo-
referencing of UAV based images with average ground
positioning error of about 0.18 m.

3.3

Vegetation indices calculated based on images captured
using UAV have been widely used for vegetation
analysis, monitoring water bodies, preparation of DEM,
etc. Themistocleous (2019) has compared efficiency of
six VIs (RGI, RGBVI, GLI, VARI, NGRDI and
ERGBVE) for preparation of DEM and found Enhanced
Red-Green-Blue Vegetation Index (ERGBVE) more
useful. Themistocleous (2019) has claimed his invention
to the ERGBVE. Vegetation indices have been used for
monitoring small water bodies (Cermakova et al., 2019).
UAV based RGB VIs gives similar results for crop
performance to ground based data (Gracia-Romero et
al., 2019).

Vs is widely used for agricultural applications
including estimations of leaf area, canopy analysis, plant
nutrients (nitrogen status), biomass estimations, crop
yield, etc. Researchers have estimated good relationship
of VIs with measured plant nutrients (Walsh et al.,
2018). Walsh et al. (2018) have successfully analyzed
Nitrogen (N) concentration in leaves of Spring wheat in
USA. They found ‘one to one’ relationship with
estimated N concentration measured for NDVI and

Geo-referencing

Spectral Indices
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model-based relationship of CLg;.,, With measured
values of plant N. Further, Buchaillot et al. (2019) have
evaluated performance of Maize Genotype under low N
condition using NDVI and leaf Chlorophyll content
calculated UAV-based image RGB data. Caturegli et al.
(2019) have compared the efficiency of NDVI with
DGCI for detection of life nitrogen content on Bermuda
grass hybrid and tall fescue in Pisa. DGCI shows
significant correlation with N content in plant life
(Caturegli et al., 2019). Javan et al. (2019) have used 16
VIs for detection of greening diseased Citrus plants in
Iran using MSS data captured by UAV based remote
sensors. Niu et al. (2019) have been successfully used
Vs calculated using UAV-RGB VIs with optimized
model for estimation of AGB. They have combined VIs
values with modeled plant height for estimations of
AGB.

VI indices can be useful to detect and calculate
disease severity based on physiological status of tree

V. S. Bhagat et al.

leaves including biomass, leaf area, chlorophyll, water
content, carotenoid content, anthocyanin content, etc.
(Bendig et al., 2015; Jansen et al., 2014). Jansen et al.,
(2014) have calculated NDVI, PRI [Photochemical
Reflectance Index], SIPI [Structure Insensitive Pigment
Index], PSSR [Pigment Specific Simple Ratio] WI
[Water Index], CRI [Carotenoids Reflectance Index],
ARI [Anthocyanin Reflectance Index], PSND [Pigment
Specific Normalized Difference], NDWI [Normalized
Difference Water Index], LWI [Leaf Water Index] and
CLSI [Cercospora Leaf Spot Index] for analysis of
physiological status of vegetation. Bendig et al. (2015)
have invented MGRVI and the RGBVI for biomass
estimations of crops. Larrinaga and Brotons (2019) have
calculated ExGI [Excess Green Index], GCC [Green
Chromatic Coordinate], VARI [Visible Atmospherically
Resistant Index] and GRVI [Green Red Vegetation
Index] for post fire analysis of the forest.

Table 3. Unmanned Aerial System based Vegetation Indices

Authors

Techniques Descriptions
RGB normalization

R R= R+};+B (1)
© 6=t @
B B= R+§+B (3)

Difference Vegetation

Index

Greenness Index GI=% (5)
R

DVI = NIR — Red (4)

Red-Green Ratio Index
(RGRI)

Green Ratio Vegetation  gryy =22 (7)
Index (Modified ¢
Anthocyanin Content

RGRI =% (6)

Index)

Anthocyanin Content ACI =< (8)

Index NIR

Simple Ratio Index SR] = % 9)

Modified Red Edge SR,, = XX (10)

Simple Ratio RE-B

Normalized Difference  ypyr = % (11)
"

Vegetation Index

Soil-Adjusted SAVI = (NIR-R)X(1+L) (12)
Vegetation Index NIR+R+L
Optimized Soil-Adjusted  ps4y| = NIR-R (13)
Vegetation Index NIR+R+0.16
(OSAVI)
Renormalized _ NIR-R

RNDVI = ees (14)

Difference Vegetation

Lietal. (2019);

Beniaich et al. (2019)

Lietal. (2019);

Beniaich et al. (2019)

Lietal. (2019);

Beniaich et al. (2019)
Larrinaga and Brotons (2019)
Albetis et al. (2017)

Javan et al. (2019)
Albetis et al. (2017)
Wan et al. (2018)

Javan et al. (2019)
Albetis et al. (2017)

Albetis et al. (2017)

Wan et al. (2018)
Javan et al. (2019)
Javan et al. (2019)

Javan et al. (2019);
Yeom et al. (2019)
Sandino et al. (2018)
Albetis et al. (2017);
Durfee et al. (2019)
Albetis et al. (2017)

Marino and Alvino (2019)

Javan et al. (2019)
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Index

Normalized Green NGDVI = MBS (15) Wahab et al. (2018);
Difference Vegetation NIR+G Sandino et al. (2018)
Index Javan et al. (2019);

Yeom et al. (2019)
Albetis et al. (2017)
Green-Red Vegetation G — RVl =22 (16) Javan et al. (2019)
G+R

Index (G-Rvi) Themistocleous (2019);
Yeom et al. (2019)
Niu et al. (2019)
Albetis et al. (2017)

Structure Insensitive SIP] = % 17) Javan et al. (2019)

Pigment Index

ifi NIR—RE

Modified Red Edge NDVIy = ————— (18) Javan et al. (2019)

Normalized Difference

Vegetation Index

Red Edge Normalized RENDVI = xﬁiiﬁi (19) Javan et al. (2019);

Difference Vegetation Yeom et al. (2019)

Index

Triangular Vegetation. TVI = 0.5[120(NIR — G) — 200(R — G)] (20) Javan et al. (2019)
Index

Modified Triangular MTVI; = 1.2[1.2(NIR — G) — 2.5(R — G)] (21) Javan et al. (2019)
Vegetation Index-1
Modified Triangular MTVI, = —EL2AR-G25R-G)  (59) Javan et al. (2019)
Vegetation Index-2 \/(2NIR+1)2—(6NIR—5\/R_0)—0.5
Modified Chlorophyll MCARI;, = 1.2[2.5(NIR — R) — 1.3(NIR — G)] Javan et al. (2019)
Absorption In (23)
Reflectance Index
Chlorophyll Index cr="2_1 (1) Javan et al. (2019);

¢ Yeom et al. (2019)
Red Edge Chlorophyll REcI =22 _1 (25) Yeom et al. (2019)
Index RE Albetis et al. (2017)
Infrared Percentage IPVI = £ (26) Javan et al. (2019)
Vegetation Index NIR+R
Normalized Excess RGBVI = (26 —R—-B)/(2G + R + B) (27) Yeom et al. (2019)
Green Index Wan et al. (2018)

Cermakova et al. (2019)

Normalized Green-Red ~ NGRDI = (G —R)/(G + R) (28) Wan et al. (2018)
Difference Index Cermakova et al. (2019);

Buchaillot et al. (2019);
Li et al. (2019);
Larrinaga and Brotons (2019)

Modified Green-Red MGRDI = (G* — G*)/(G* + G*) (29) Li et al. (2019)
Difference Index Yeom et al. (2019)
Woebbecke Index WI = (G- B)/(R+G) (30) Li et al. (2019)
Kawashima Index KI = (R—-B)/(R+ B) (31) Li et al. (2019)
Red-Green-Blue RGBVI = ((G X G) — (R xB))/((GxG)+ (RxB)) Cermakova etal. (2019);
Vegetation Index (32) Lietal. (2019)
Anthocyanin ARI = Green™ — RedEdge™! (33) Albetis et al. (2017)
Reflectance Index

Modified Anthocyanin MARI = (Green™! — RedEdge™") X NIR (34) Albetis et al. (2017)

Reflectance Index
Normalized Difference

Spectral Index (NDSI: (Ry1 — Ry2)/(Ry1 + Ryz) (35) Wan et al. (2018)

944, 758)

Visible Atmospherically VARI = (G —R)/(G + R — B) (36) Cermakova et al. (2019);
Resistant Index Eng et al. (2018)

Larrinaga and Brotons (2019)
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Enhanced Red-Green-
Blue Vegetation Index

ERGBVE =1 x ((G* — (R X B)) / (G* + (R X B))
@37

Themistocleous (2019)

Excess RGB Indies
Excess Green
Vegetation Index

ExGVI=2G—R—B (38)

Excess Red Vegetation ExRVI = 1.4R — G (39)

Index

Excess Blue Vegetation  ExRVI = 1.4B — G (40)

Index

Excess Green Minus ExGR = ExGVI —14R — G (41)
Excess Red

Vegetative G/(R*B1=9), a = 0.667 (42)

Texture Indices
Normalized Difference
Texture Indices

NDTI(T,,T;) = (T, —T5)/(T, + T) (43)

Cermakova et al. (2019);
Lietal. (2019);

Yeom et al. (2019)
Lietal. (2019)

Lietal. (2019)

Li et al. (2019);
Yeom et al. (2019);
Holman et al. (2019)
Wan et al. (2018)

Li et al. (2019)

Lietal. (2019)

Soil Adjusted sAy] = YR-R(+a) L@ =05 (44) Sandino et al. (2018)
Vegetation Index NIR+R+a Yeom et al. (2019)
Optimiz_ed Soil Adjusted g4y = WIR-RA+a) La=0.16 (45) Yeom et al. (2019);
Vegetation Index NIR+R+a Durfee et al. (2019)

Yeom et al. (2019)

Modified Soil Adjusted _
Vegetation Index MSAVI = 2

Dark Green Color Index  peey = [(Hue -60
60

2NIR+1—/(2NIR+1)2—-8(NIR—R) (46)

+ (1 — (Saturation))| +

(1 — (Brightness))]/3 (47)

Phylloxera Indeces

PI1 = (Rs3; — Rsoa/(Rs22 + Rsos) (48)

Caturegli et al. (2019)

Vanegas et al. (2018)

PI2 = (Rss1 — Rse2/(Rss1 + Rsez) (49)
PI3 = (R700 — Rego/(R700 + Rggo) (50)
PI4 = (R7g; — R700/(R7g2 + R700) (51)
PI5 = (R7g; — Re71/(R7g2 + Rg71) (52)
PI6 = (Rego — Rse3/(Rego + Rse3) (53)

Color Index of

CIVE = 0.441 X Ry — 0.881 X R; + 0.385 X Ry +

Wan et al. (2018)

Vegetation 18.78745 (54) Niu et al. (2019)
Total Ratio Vegetation TRVI = 4[(NIR — R)/(NIR + R + G + B)] (55) Durfee et al. (2019)
Index
Triangular Greenness TGl = —0.5[(AR — AB)/(R — G) — (AR — AG)(R — Durfee et al. (2019)
Index B)] (56)
Vegetation Index VEG =—2¢ 4 =0.667 (57) Niu et al. (2019)
RR‘ZXRB(I—Q) !
Researchers have used VIs for analysis of height estimated using UAV based DEM model.

vegetation fractions, plant growth, crop height and yield,
crop diseases, etc. Marcial-Pablo et al. (2018) have
used three RGB based Excess Green (ExG), Color Index
of Vegetation (CIVE), and Vegetation Index Green
(VIg) and three NIR-based Normalized Difference
Vegetation Index (NDVI), Green NDVI (GNDVI) and
Normalized Green (NG) for estimation of vegetation
fractions. Yeom et al. (2019) have analyzed 5 RGB and
8 NIR based VIs for plant growth comparison from
conventional tillage (CT) and no-tillage (NT) fields.
Crop vyield has relationship with crop height which can
be detected using UAV based images (Fathipoor et al.,
2019). Fathipoor et al. (2019) have estimated crop yield
using VIs viz. visible atmospherically resistant index,
NDVI and excess red in combination of estimated crop

66

Sandino et al. (2018) have calculated NDVI, GNDVI,
SAVI and MSAVI2 using UAV-based hyperspectral
data for mapping of Pathogens affected forest trees.
MSAVI and OSAVI are found more useful for plant
growth analysis (Yeom et al., 2019). Albetis et al.
(2017) have used different vegetation indices for
detection and comparison with biophysical parameters
for analysis of Grapevine disease using images captured
by UAV.

3.4  RGB-Vegetation Indices

UAV-RGB based vegetation indices have great potential
of high precision and low cost assessment, planning and
monitoring of agriculture, water resources, settlements,
deserters, etc. Caturegli et al. (2019) have used RGB
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based vegetation indices for analysis and mapping of
crop nitrogen at large area. Buchaillot et al. (2019) have
reported better potential of UAV based RGB VIs for
estimations of crop analysis.

Kauth and Thomas (1976) have transformed row
Landsat data into greenness index. Larrinaga and
Brotons (2019) have calculated the greenness indices
(ExGI, GCC, GRVI and VARI) for analysis of post fire
regeneration of Mediterranean forests. Wan et al. (2018)
have used Red-Green Ratio Index (RGRI) for
estimations of crop flower numbers (Table 3). RGRI
index is useful ‘to analysis the angular sensitivity of
vegetation indices’ (Wan et al., 2018) and referred as an
index of anthocyanin content in vegetation (Gamon and
Surfus, 1999).

Several researchers have used Normalized Green-
Red Difference Index (NGRDI) after Rouse et al. (1973)
analysis of vegetation covers (Larrinaga and Brotons,
2019). Green vegetation reflects maximum amount of
energy in the form of green and NIR spectral bands.
They absorb radiations through blue and red spectral
bands (Jiany et al, 2008). Therefore, this index is similar
to NDVI calculated using band-G and -R of RGB
image. Green reflects more than red from vegetation,
red reflected more than green from soil and almost same
reflectance occurred from water and ice. Therefore,
NGRDI estimates positive, negative and near-zero for
vegetation, soils and water-snow. This is promising
indices for estimations of biomass (Bendig et al., 2015).
Wan et al. (2018) have used this index for estimations of
flowers of oilseeds. Further, Buchaillot et al. (2019)
have used NG-RVI for estimation of N in maize crops in

Nigeria. This index shows difference and signal
structure than the NDVI.
NGRDI is similar to NDVI for calculations

(Buchaillot et al., 2019). Buchaillot et al. (2019) have
calculated NGRDI (equation) using UVA based RGB
data for estimations of crop yield:

NGRDI = R550—R670 (58)

R550+R670

Further, Buchaillot et al. (2019) have reported new RGB
based VIs: NDLab and NDluv indices with performance
similar to grain yield (GY) models.

NGRDI = (G —R)/(G+R) (59) (Cermakova et al.,
2019)

Excess Green Red (ExXGR) index (equation (4)) is
useful for analysis of complex canopy structure (Wan et
al., 2018). Therefore, this index shows significant
agreement with green vegetation and used to mask the
area with green vegetation (Threshold >0) (Holman et
al., 2019). Larrinaga and Brotons (2019) have used
successfully EXGR for analysis post fire regeneration of
forest. It was used for estimations of crop flower
numbers (Wan et al., 2018).

ExGR=2XxG—R—B (60)
2019)

(Cermakova et al.,
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EXGR shows potential to get precise vegetation
differences (Yeom et al., 2019) and Beniaich et al. (2019)
have reported better performance for soil cover analysis.
Further, Cermakova et al. (2019) have used Normalized
Excess Green Index (equation (61)):

NEXGR=(2xG—R—-B)/(2G+ R+ B) (61)
(Cermakova et al., 2019)

This index is known as different names like Leaf
Area Index (LAI), Green Leaf Index (GLI), Red Green
Blue Vegetation Index (RGBVI), etc.

Bendig et al. (2015) have developed Red-Green-
Blue Vegetation Index (RGBVI) (equation (62)) for
estimation the plant height to estimate biomass of
summer barley crop.

RGBVI = ((GxXG)— (RxB))/((GxG)+
(R x B)) (62) (Cermakova et al., 2019)

They have reported potentials of RGBVI for
vegetation analysis with need of further testing in
different  geophysical  environmental  situations.
Modified GRVI (MGRVI) can be considered as an
indicator of plant phenology and useful for estimations
of biomass (Wan et al., 2018). MGRVI shows potential
of precise differences in vegetation characteristics
(Yeom et al., 2019). Therefore, Bendig et al. (2015)
have modified GRVI (MGRVI) for estimation of the
plant height to estimate biomass of summer barley crop.
Wan et al. (2018) have used this index for estimating the
number of flowers of oilseeds. Further, Excess Green
Minus Excess Red (EXGR) proposed by Meyer and
Neto (2008) have been suggested for separation from
soil and backgrounds (Beniaich et al., 2019). They have
used normalized values for RGB for estimations of
EXGR. Themistocleous (2019) has calculated Enhanced
Red-Green-Blue Vegetation Index (ERGBVE) and
found more efficiency for estimation of DEM compared
to other V1.

Dark Green Color Index (DGCI) values vary from
0 (very yellow) to 1(dark green). Caturegli et al. (2019)
have calculated DGCI pixel values from RGB pixel
values and compared with NDVI values to check the
efficiency for detection of leaf nitrogen content. Further,
Gitelson et al. (2002) have wused Visible
Atmospherically Resistant Index (VARI) for correction
of indices for atmospheric effects. This index shows
significant correlation with crop height estimated using
UAYV based DEM and crop yield in Iran (Fathipoor et
al., 2019). Wan et al. (2018) have used this index for
estimations of flower numbers of oilseed rape. Larrinaga
and Brotons (2019) have compared VARI (equation
(63)) for analysis of post fire analysis of forest cover.

VARI = (G —R)/(G+R—B) (63) (Cermakova et
al., 2019).

Excess Red shows positive correlation with crop
height estimated using DEM prepared based on AUV
images (Fathipoor et al., 2019). Wan et al. (2018) have
used color index for flower number estimations for
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oilseed crops. Niu et al. (2019) have used CIVE for
estimation for AGB in China. Vegetativen (VEG) was
also used for estimations for flowering classes of oilseed
by Wan et al. (2018).

3.5
3.5.1

SRI is mainly relating with crop physiology (Wan et al.,
2018). Wan et al. (2018) have used simple ratio index
(equation (64)) for estimations of flower numbers of
oilseeds after Jordan (1969). Leaves absorb red than the
infrared therefore greater ratio represents comparatively
more canopy cover (Jordan, 1969). Wan et al. (2018)
found significant correlation with number of flowers of
oilseeds.

NIR-Vegetation Indices

Simple Ratio Index

SRI = Rost (64)
R7sg

3.5.2 Normalized Difference Index

(NDVI)

Since NDVI was invented (1970), various VIs was
developed using new spectral bands according to
objectives of the study (Yeom et al., 2019). Rationing is
the strength of NDVI which reduces multiplicative noise
in multi-image data (Bhagat, 2012). Band-Red has
ability to discriminate contrast between vegetation and
non-vegetation whereas NIR is more sensitive to plant
Chlorophyll. Therefore, NDVI is more superior than the
RGB based indices. UAV based VIs show significant
relationship with remote sensing based NDVI (Schut et
al., 2018). Therefore, UAV-based NDVI was used
widely for vegetation analysis including forest
classification, plant stress analysis (Caturegli et al.,
2019), crop nutrient detection (Walsh et al., 2018;
Buchaillot et al.,, 2019; Caturegli et al., 2019),
crop/plant disease detection (Albetis et al. 2017; Javan
etal., 2019), etc.

Vegetation

Caturegli et al. (2019) have successfully collected
ground based direct NDVI output of captured
reflectance at Red region (660 nm) and NIR region (780
nm) using Handheld Crop Sensor (HCS) for estimations
of leaf nitrogen content. Holman et al. (2019) have
reported the poor accuracy of NDVI calculated from the
image captured using altered camera from R to NIR.
Ratio between red and NIR remain unchanged when
biomass increases (Jiang et al., 2019). Therefore, Jiang
et al. (2019) have combined NDVI data with TIN based
structural feature for precise estimation of AGB of rice
crop. Fathipoor et al. (2019) have found significant
correlation of NDVI with crop height and crop yield.
Albetis et al. (2017) have compared NDVI with
biophysical characteristics for detection of vineyard
disease. Marino and Alvino (2019) have used this index
for analysis of variability in vegetation cover. However,
NDVI is not able to distinguish the typical disease (viz.
phylloxera infestation) stress from stress cases by other
sources and thermal imagery suggested to overcome this
limitation (Vanegas et al., 2018).
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3.5.3  Green Normalized Difference Vegetation Index
(GNDVI)

Green Normalized Difference Vegetation Index is
similar to NDVI uses visible band-green instead of
band-red (Sankaran et al., 2015). Band-INR and G have
good abilities to estimate the density and intensity of
vegetation cover using solar radiation (Wahab et al.,
2018). Reflectance in band-G is more sensitive to plant
leaf Chlorophyll and plant health (Wahab et al., 2018).
Burke and Lobell (2017) pointed that Band-G is more
useful to capture the disparity in nutrient deficiency and
therefore crop yield. Therefore, this index is more
sensitive to wide range of Chlorophyll and efficient for
vegetation analysis than the Normalized Difference
Vegetation Index (NDVI) (Gitelson and Merzlyak,
1998). Wahab et al. (2018) have calculated the GNDVI
for estimation of vigor and yield of Maize crop. It also
shows stronger relation with drought stressed and non-
stressed condition crops. Marcial-Pablo et al. (2018)
reported superiority of GNDVI for vegetation fraction
analysis.

Further, Marino and Alvino (2019) have used
Soil-adjusted vegetation index (OSAVI) for estimation
of variation in vegetation cover of wheat for yield
analyses. Leaf Water Index (LWI) and Two-
Dimensional Smoothing Kernels also used for this
analysis.

3.54

Some of the researchers have combined RGB indices for
detection and estimations of AGB above ground
biomass]. Niu et al. (2019) have combined (equation
(65)) EXG, EXGR, CIVE and VEG for this purpose as:

€0l = 0.25 X ExG + 0.3 X ExGR + 0.33 X
CIVE + 0.12 X VEG  (65) after Niu et al. (2019)

Wan et al. (2018) have suggested combinations of
various VIs (RGRI and NDSI (944, 758)) calculated
using UAV-based RGB datasets for estimations for
flowing numbers of oilseed ripe.

3.55

Combinations of Indices (COIl)

Estimation, Prediction and Classification

Techniques

Researchers have used Support Vector Machine (SVM),
Point Cloud (PC), Simple Linear Regression (SLR),
Simple Exponential Regression, Random Forest (RF),
Partial Least Squares Regression (PLSR) Model, Digital
Vigor Model (DVM), K-means method for classification
of UAS based RS images for different uses (Table 4).

SVM s classification technique widely used for
detection of disparity, land, visitation (plants, crops),
etc. (Javan et al., 2019). Javan et al. (2019) have used
SVM to detect non-tree space within a plantation (Citrus
trees), healthy and diseased trees. Durfee et al. (2019)
have used this technique for classification of vegetation
over a watershed.

Point cloud technique was used for preparation of
DEM using ERGBVE (Themistocleous, 2019). Point
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cloud data was used to acquire TIN structures of rice
plots in Switzerland based on UAV data (Jiang et al.,
2019). This method was used for estimation of plant
height for calculation of AGB of maize (Niu et al.,
2019). Park et al. (2019) have used statistical
techniques: mean, median and standard deviation for
detection of leaf cover of individual tree using RGB
Chromatic Coordinates, excess green, green vegetation,
non-photosynthetic indices, etc. Kerle et al. (2020) have
showed applicability of 3D point clouds for highly
detailed and accurate scene reconstruction to recognize
the features.

Simple Linear Regression (SLR) was used of
AGB of rice using multiple indices, TIN based structural
feature of plots, meteorological data (Jiang et al., 2019).
Simple Exponential Regression (SLR) was used of AGB
of rice using multiple indices, TIN based structural
feature of plots, meteorological data (Jiang et al., 2019).

Buchaillot et al. (2019) have reported better
performance of multivariate regression models
calculated based on RGB indices for estimations of
agronomic parameters. Further, they have calculated
grain Yield Loss Index (GYLI) for analysis of
variability in crop productions. Fathipoor et al. (2019)
have established Partial Least Squares Regression
(PLSR) Model using plant height estimated using AUV-
RGB based DEM for estimation of crop yield in Iran.

V. S. Bhagat et al.

Jiang et al. (2019) have used Random Forest (RF)
method for combing the UAV based MSS, structural
and metrological data for estimation of AGB of rice
crop. Wan et al. (2018) have used this technique for
prediction of flower number using UAV-RGB data for
oilseed rape. Oliveira et al. (2019) have reported better
performance of RF than multiple linear regression
calculated from RGB and hyperspectral datasets for
estimation and validation of grass. Further, Digital
Vigor Model (DVM) has been obtained from Digital
Surface Model (DSM) and Digital Terrain Model
(DTM) established base on AUV-RGB images
(Vanegas et al., 2018). Wan et al. (2018) have used K-
mean method for identification of flower coverage area
of oilseed rape.

One-tailed Z-test was used to test the significance
of relationship between VIs and study objects. Yeom et
al. (2019) have conducted this test to find the
significance of VIs difference with tillage and non-
tillage treatment in agriculture.

Accuracy of estimated results has been achieved
more than 95% using UAV remote sensing technique.
Javan et al. (2019) have been detected and classified
diseased Citrus trees at more than 95% accuracy.

Table 4. Estimation, Predictions and Classification techniques

Technique Data Authors Applications
Simple Linear RGB (3 bands) Li et al. (2019) Estimation of LAl using VIs.
Regression (SLR) MSS (5 bands) Jiang et al. (2019) Estimation of plant based on using

Multiple Linear

Regression (MLR)

Partial Least

Squares Regression

(PLSR)

Simple Exponential

Regression (SER)

Random Forest (RF)

Principal
Component
Regression (PCR)
Support Vector
Machine (SVM)

Point Cloud

Universal
Calibration
Equation

RGB (3 bands)

RGB (3 bands)

MSS (12 bands)
RGB (3 bands)
RGB (3 bands)

MSS (5 bands)

RGB (3 bands)
MSS (5 bands)

MSS (6 bands)

Guo et al. (2019)
Lietal. (2019)

Lietal. (2019)

Jiang et al. (2019)

Lietal. (2019)
Lietal. (2019)

Javan et al. (2019)

Lietal. (2019)

Durfee et al. (2019)

Themistocleous
(2019)

Jiang et al. (2019)

Guo et al. (2019)

indices.

To calibrate the MSS images in little
cloudy and cloudy weather.
Estimation of LAI using VIs.

Estimation of LAI using VIs.

To estimate the AGB of rice crop.

Estimation of LAI using VIs.
Estimation of LAI using VIs.

To detect the tree and non-tree objects.
To detect the Greening disease of citrus
trees.

Estimation of LAI using VIs.

Canopy classification over a watershed.
To prepared the DEM.

To estimate the TIN based structural
aspects of the rice plots.

To calibrate the MSS images in little
cloudy and cloudy weather.
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10.

11.

12.

13.

14.

15.

16.

17.

FINDINGS AND CONCLUSIONS

The market revenue of UAS based remote sensing
and mapping is bumming since last decade.

UAS based RS techniques are widely used for
analysis of vegetation cover, agriculture, hydro-
geomorphological aspects, hydrology, water
conservation programs, water qualities, river
characteristic as well as for soil management,
urban mapping, disaster management, etc.

Timely, intensive, cost effective and efficient data
collection with less labor and time can be possible
using UAV systems (Yeom et al., 2019).

UASSs based RGB, MSS and hyperspectral datasets
are available for analysis of biophysical parameters
of the Earth surface.

MSS sensors more costly than the RGB sensors
(Marcial-Pablo et al., 2018).

Some studies have been conducted to analyze the
impacts of changes in flight height on number of
detected features and definition of ground truth
information (Javan et al., 2019). Image resolution
varies according to the flying height.

UAS provides data at fine resolution (finer than
1cm) with desired temporal resolution.

The atmospheric distortions appear more in images
with increasing flying height (Guo et al., 2019).
Flying time affects the sun light and angle,
weather,  atmospheric  transference,  plant
phenology.

Ground reflectance panel, ambient illumination
sensors and mean DN values calculated using
white reference were effectively used for
calibration of UAV based sensing images.

The universal calibration equation is more suitable
for calibration of images acquired sunny and little
cloudy commissions (Guo et al., 2019).

Normalized RGB bands were used before calculation of
VIs in many research projects.

Image clarity and analytical preciseness are fully
relied on geo-referencing of image captured using
multi-leans sensors.

Several USA based RGB and NIR VIs have been
used for different parameters of the Earth surface.
Vs is widely used for agricultural applications:
leaf area estimations, canopy analysis, plant
nutrients analysis (nitrogen status), biomass
estimations, plant growth, crop yield estimations,
etc.

VIs correlate with disease severity based on
vegetation physiology status: tree leaves including
biomass, leaf area, chlorophyll, water content,
carotenoid content, anthocyanin content, etc.
(Jansen et al., 2014)

UAV-RGB based vegetation indices have great
potential of high precision and low-cost
assessment, planning and monitoring  of
agriculture, water resources, settlements, deserters,
etc.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Limitations of the UAV systems are:
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Normalized Green-Red Difference Index (NGRDI)
is similar to NDVI and useful to analyze the
vegetation covers.

Excess Red shows positive correlation with crop
height estimated using DEM prepared based on
AUV images.

RGB based ExG is best option for cost reduction
for early season crop monitoring.

RGB based VIs and models are efficient for
estimations of AGB (Niu et al., 2019).

ExG, CIVE and Vegetativen are useful for
delineation of levels of green vegetation (Wan et
al., 2018).

NGRDI, RGRI and MGRVI show significant
correlations with number of flowers of oilseeds
(Wan et al., 2018).

NIR based VIs are found more superior than RGB
VIs to find precise vegetation differences (Yeom et
al., 2019).

UAV-based NDVI was used widely for vegetation
analysis including forest classification, plant stress
analysis, crop nutrient detection, crop/plant disease
detection, etc.

NDVI is not able to distinguish the typical disease
(viz. phylloxera infestation) stress in vegetation,
therefore other sources and thermal imageries are
suggested to overcome these limitations.

GNDVI shows stronger relation with drought
stressed and non-stressed condition crops.

GNDVI is reported superior for analysis of
vegetation fractions in cropping area (Marcial-
Pablo et al., 2018).

Combination of MSS and TIN based structural
data gives more precise results than use of any data
alone (Jiang et al., 2019).

SLR, SER and RF are useful techniques for
combining the UAV based data and indices with
different type of data like TIN based structural
features, meteorological data, etc. (Jiang et al.,
2019).

Similar performance was observed in case UAV
base RGB VIs to ground based data for crop
performance: crop yield (Gracia-Romero et al.,
2019).

Support Vector Machine (SVM), Point Cloud,
Simple Linear Regression (SLR), Simple
Exponential Regression, Random Forest (RF),
Partial Least Squares Regression (PLSR) Model,
Digital Vigor Model (DVM), K-means are the
method for classification of UAS based RS images
for different uses.

limited

coverage and battery, flight limitations in windy
weather, safety problems, (Yeom et al., 2019), higher
initial costs, sensor capability, image processing and
final products dissemination (Zhang and Kovacs, 2012).
Image distortions from camera and environmental
factors are weakening the applicability of the UAV RS
techniques (Holman et al., 2019).
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No significant improvement was found in
correlation of VIs with AGB in multivariable linear
regression model (Niu et al., 2019). They have
suggested machine learning techniques for better
estimations. VIs base vegetation status analysis does not
allow differentiation between the diseases (Jansen et al.,
2014). Therefore, disease specific indices can be helpful
for identification of crop disease and detection and
delineation of diseased area.

All UAS based Vs calculated and used for different
analysis of earth surface are tested in small area and
results are very site-specific. Results of used methods,
techniques and datasets can be changed according to
biophysical environment. Therefore, UAS-VIs should be
calculated using multiple datasets captured at different
biophysical environmental conditions for successful
application of the results (Sandino et al., 2018; Jiang et
al., 2019). UAV based RGB and MSS combined
cameras will more promising for vegetation analysis for
planning and monitoring the forestry and agriculture
(Wan et al., 2018). The technology is promising and
will grow exponentially in coming years (Sankaran et
al., 2015).
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ABBREVIATIONS

AGB: Above Ground Biomass; B: Blue; CI:
Chlorophyll Index; DEM: Digital Elevation Model; DN:
Digital Number; EGMER: Excess Green Minus
Excess Red; ERGI: Enhanced Red-Green-Blue; G:
Green; GCP: Ground Control Point; GCS: Ground
Control Station; GI: Greenness index; GLI: Green Leaf
Index; GRVI: Green Ratio Vegetation Index; G-RVI:
Green-Red Vegetation Index; IPVI: Infrared Percentage
Vegetation Index; MCARI: Modified Chlorophyll
Absorption in Reflectance Index; MRENDVI: Modified
Red Edge Normalized Difference Vegetation Index;
MRESR: Modified Red Edge Simple Ratio; MSS:
Multispectral Scanner System; MTVI1: Modified
Triangular Vegetation Index-1; MTVI2: Modified

Triangular Vegetation Index-2; NDVI: Normalized
Difference Vegetation Index; NEGI: Normalized
Excess Green Index; NGDVI: Normalized Green

Difference Vegetation Index; NG-RDI: Normalized
Green-Red Difference Index; R: Red; RENDVI: Red
Edge Normalized Difference Vegetation Index; RGB:
Red Green Blue; RGBVI: Red-Green-Blue Vegetation
Index; RNDVI: Renormalized Difference Vegetation
Index; RPAS: Remotely-Piloted Aerial Systems; SIPI:
Structure Insensitive Pigment Index; SR: Simple Ratio;
SVM: Support Vector Machine; TVI: Triangular
Vegetation Index; UAS: Unmanned Aircraft Systems;
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UAV: Unmanned Aerial Vehicle; VARI: Visible
Atmospherically Resistant Index; VI: Vegetation Index;
VIEG: Vegetation Index of Excess Green.
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