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Abstract  

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high 

expensive satellite remote sensing, manned aerial surveys, and labors time consuming 

conventional fieldwork techniques of data collection. UAS can provide spatial data at 

very fine (up to a few mm) and desirable temporal resolution. Several studies have 

used vegetation indices (VIs) calculated from UAS based on optical- and MSS-

datasets to model the biophysical parameters of the Earth surface. They have used 

different techniques of estimations, predictions and classifications. However, these 

results vary according to used datasets and techniques and appear very site-specific. 

These existing approaches aren’t optimal and applicable for all cases and need to be 

tested according to sensor category and different geophysical environmental 

conditions for global applications. UAS remote sensing is a challenging and 

interesting area of research for sustainable land management. 
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1 INTRODUCTION 
 

Unmanned Aerial Systems (UAS) have been widely 

used in many applications such as vegetation monitoring 

(Merza and Chapman, 2011); agriculture (Walsh et al., 

2018; Marino and Alvino, 2019), hydro-

geomorphological assessments (Casado et al., 2016), 

hydrology, water conservation, water quality analysis 

(Koparan et al., 2019), river characterization (Casado et 

al., 2016; Larrinaga and Brotons, 2019), soil 

management (Oliveira et al., 2019), urban mapping 

(Noor et al., 2018), disaster management (Yang et al., 

2016; Carvajal-Ramírez et al., 2019) including post-fire 

vegetation analysis (Fernández-Guisuraga et al., 2018). 

At present, satellite based remote sensing has limitations 

such as resolutions, availability including frequency and 

flexibility, complicated image processing, higher costs 

etc. (Zhang and Kovacs, 2012; Wan et al., 2018) 

whereas ground-based sensor systems have issues 

related to mobility (moving one place to another), cost-

effectiveness and real time mapping (Zhang and Kovacs, 

2012; Sankaran et al., 2015; Caturegli et al., 2019). 

However, UAS based techniques are useful for survey 

of relatively smaller area, but for efficient work it needs 

to be larger than 5 hectors (Wahab et al., 2018). UAS is 

more efficient tool to bridge the gap between- 1) high 

expensive satellite and manned areal remote sensing and 

2) labors and time-consuming conventional fieldwork 

techniques of data collection for environmental 

planning, management and monitoring (Wahab et al., 

2018).  

The market revenue of UAS based remote sensing 

and mapping is booming since last decade (Colomina 

and Molina, 2014; Barbedo, 2019). At the same time 

scientific community and industry have remarkably 

involved with publications and production of essential 

equipment (Colomina and Molina, 2014). Many 

conferences/meetings were organized in this period and
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volumes were published by reputed organizations and 

publishers (Colomina and Molina, 2014). Many 

commercial, non-profit organizations and governmental 

agencies are involved and have invested their energies 

for research, development and applications of the UAS 

techniques. 

Popular terms observed for this technique are 

Remotely-Piloted Aerial Systems (RPAS), ‘Unmanned 

Aerial Vehicle’ (UAV), ‘aerial robot’, ‘drone’ 

(Colomina and Molina, 2014), etc. International Civil 

Aviation Organization (ICAO) has coined the term 

RPAS and integrated this technology into ‘international 

civil aviation system’ (ICAO, 2011). UAS includes: 1) 

unmanned aircraft (UA), 2) a Ground Control Station 

(GCS) and 3) a communication data links (Colomina 

and Molina, 2014). 1) Aircraft trajectory: waypoints, 

strips, speed, attitude, etc. and 2) mission management: 

sensor configuration, triggering events, flying 

directions, etc. are important aspects during the mission.  

Micro- and mini- UAS vehicles are very sensitive to 

winds therefore 80% forward and 60-80% cross overlap 

are suggested to compensate errors occurred due to 

aircraft instability (Colomina and Molina, 2014). Four 

types of UAS are parachutes, blimps, rotocopters, and 

fixed wing systems (Sankaran et al., 2015). Further, 

stable imaging platforms have been suggested as 

solution to the problem of wind induced instability in 

UAV (Yang et al., 2016). 

Colomina and Molina (2014) have explained 

different aspects of UAS: recent unmanned aircraft, 

navigation, sensing techniques, data processing 

techniques and photogrammetry. Novelties of the 

technique are very high resolution (centimeter level), 

low-cost equipment, powerful, sophisticated computer 

vision, robotics and geomatic engineering (Colomina 

and Molina, 2014; Gracia-Romero et al., 2019; 

Caturegli et al., 2019). Therefore, the advances of the 

technique are: 1) cost-effective: low weight, slow flight, 

speed and extended range, (Casado et al., 2016), 2), less 

fuel (Casado et al., 2016), 3), timely and on-demand 

data (Casado et al., 2016) and 4) safety mission (Casado 

et al. 2016). UAS can capture images even in cloudy 

conditions (Casado et al., 2016). This technique is more 

useful for large-scale low-altitude imaging and 

geospatial information (Colomina and Molina, 2014) for 

policy makers, regulatory bodies and mapping 

authorities.   

UAS applications are detection and quantification 

of stress plants, prediction of yield, estimations of 

biomass and canopy cover, classifications of vegetation, 

assessment of plant heights, etc. (Barbedo, 2019; 

Oliveira et al., 2019; Durfee et al., 2019). Vegetation 

indices (VIs) show significant relationship with 

disparities in ground cover (Schut et al., 2018) including 

vegetation, soil characteristics (Oliveira et al., 2019), 

barren and impervious surfaces, water bodies etc. VIs 

are widely used for analysis of 1) precision agriculture: 

analysis of crop performance (Buchaillot et al., 2016; 

Marino and Alvino, 2019; Gracia-Romero et al., 2019), 

diseased crops/plants (Sandino et al., 2018; Javan et al., 

2019), plant nutrients (Walsh et al., 2018), plant 

phenology (Park et al., 2019), plant height (Fathipoor et 

al., 2019), 2) preparation of DEM (Themistocleous, 

2019), 3) management of covered soils (Oliveira et al., 

2019), etc. Durfee et al. (2019) have used VIs for 

assessing the green cover at watershed level. Carvajal-

Ramírez et al. (2019) have calculated fire severity 

indices for pre- and post-fire situations using MSS 

imageries captured by UAS.  

 

Table 1. Types of Unmanned Aerial System 

UAS types Advantages Limitations 

Parachutes Fly in calm condition (no wind). Can operate in windy condition. 

Low speed and short flight time. 

Blimps Useful for area imaging. 

Capture clear optical images. 

Longer coverage of capture. 

Unable to fly in windy condition. 

Rotocopters Widely used type for UAS. 

Fly at different altitudes (four to eight 

propellers). 

GPS-based navigation. 

Fly horizontally and vertically. 

Take-off and landing over very little space. 

Thermal, multispectral to hyperspectral sensor. 

Low speed and short flight time. 

 

Fixed wing systems More speed and longer flight time. 

Waypoint navigation 

Multiple sensors 

Limited hovering capabilities. 

Image blurring due to higher travel speed 

than the sensor. 

Modified after Sankaran et al., 2015. 
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Walsh et al. (2018) have calculated VIs for Spring 

wheat thorough growing stages using UAS images and 

found positive significant relationship between 

calculated VIs values and measured plant nutrients. 

Javan et al. (2019) have successfully used UAV based 

VIs for detection and mapping of diseased Citrus plants. 

Buchaillot et al. (2016) have analyzed Maize 

performance in low nitrogen condition using VIs 

calculated based on UAS-MSS data in Zimbabwe. 

Marino and Alvino (2019) have analyzed the abilities of 

high resolution UAU images to detect the 

spatiotemporal variability of wheat crop in Italy. 

Caturegli et al. (2019) have analyzed the applicability of 

NDVI [Normalized Difference Vegetation Index] and 

DGCI [Dark Green Color Index] for detection of N 

content in plant life for precision agricultural 

management using UAS. Eng et al. (2018) and 

Cermakova et al. (2019) have used the VARI (Visible 

Atmospherically Resistant Index) for vegetation 

analysis. Park et al. (2019) have using UAV based color 

indices to quantify the leaf phenology of trees and 

species in tropical forest. Marcial-Pablo et al. (2018) 

have used VIs for estimations of vegetation fractions 

using UAV-RGB images. Therefore, UAS based VIs are 

very useful for analysis of plant nutrients, variability in 

crop performance, vegetation analysis, etc.    

Researchers have used different methods and 

techniques for analysis of ground surface using VIs 

calculated from UAS based data. Yeom et al. (2019) 

have compered the plant growth pattern for conventional 

tillage (CT) and no-tillage (NT) agricultural lands using 

UAS based VIs. Wahab et al. (2018) have UAV based 

GNDVI to assess the growing stage wise vigor and 

yields of maize crops in Sub-Saharan Africa. Jiang et al 

(2019) have used UAV based VIs for estimation of 

above ground biomass (AGB) with TIN [Triangulated 

Irregular Network] based structure and metrological 

data. Fathipoor et al. (2019) have combined VIs with 

plant height estimated using UAV based DEM for crop 

yield prediction. Further, Niu et al. (2019) have 

compared VIs indices and point cloud-based plant 

height estimated using UAV-RGB images for estimation 

of AGB of maize crops. Oliveira et al. (2019) have 

successfully used and suggested Random Forest (RF) 

calculated from UAV based RGB and hyperspectral data 

for estimation and mapping of biomass production from 

grasses. Themistocleous (2019) has prepared DEM 

using five VI. Thus, VIs calculated using UAV based 

RGB and NIR data are used for planning and monitoring 

the environmental issues.   

Recently, some researchers have reviewed the 

reported research on UAV technology (Xue and Su, 

2017; Kadian and Khadanga, 2019; Asmaa et al., 2019 

Guo et al., 2020), and its applications in agriculture 

(Zhang and Kovacs, 2012; Barbedo, 2019), urban 

planning (Noor et al., 2018), communication (Indu and 

Singh, 2020), target tracking (Chen and Zhou), damage 

mapping (Kerle et al. 2020), related regulations and 

politics (Srivastava et al., 2019). Further, Sankaran et al. 

(2015) have analyzed research reports on application of 

UAS-VIs for crop phenotyping. Xue and Su (2017) have 

analyzed the applications of more than 100 VIs for 

precision analysis of vegetation and environment. 

Barbedo (2019) have reviewed applications of UAV and 

imaging sensors for monitoring and assessing the plant 

stresses. Thus, it shows limited efforts for analysis of 

research published on applications of VIs from UAS 

based datasets. Therefore, the present study focuses on 

review of applications of VIs-UAS datasets for remote 

sensing analysis. The analysis discussed in the paper can 

be useful for preparation and application of UAS based 

datasets for analysis of biophysical parameters of the 

Earth surface for sustainable land management.  

This article reviews the different aspects of UAS 

based datasets including sensors, spatial resolutions and 

techniques of data processing. Introductory section 

reviews the background of the paper with aims and 

objectives of the study and its applications. Section 

‘data’ covers the types of sensor installed on the UAS 

platforms and spatial resolution of the data. Third 

section explains the techniques of data processing 

including radiometric- and geometric corrections, geo-

referencing, image enhancement and classification 

techniques used in the research that are reported in 

different papers and articles. Last section discusses the 

finding and applications of the technology with reported 

limitations. The citations are listed at the end of the 

paper and complied information is tabulated.         

2 DATA  

2.1 Sensors 

UAV-based remote sensing was beginning with small 

range of spectral bands: Red, Green and Blue (RGB). 

RGB images are powerful, low-coast and more practical 

source of data for performance analysis and monitoring 

crop cycles (Gracia-Romero et al., 2019; Beniaich et al., 

2019). Recently, these systems are updated with 

multispectral (MSS) sensors with Red Edge (RE) and 

NIR bands (Yeom et al., 2019) (Table 2). Therefore, VIs 

developed for traditional RS can be calculated using this 

data for various applications for agriculture 

management, water resources management, urban 

planning, forest management, etc. NIR found superior 

than RGB for precise vegetation analysis using different 

VIs (Yeom et al., 2019). Research have reported results 

of UAV based crop performance analysis similar to data 

captured using ground-based sensors (Gracia-Romero et 

al., 2019). Marcial-Pablo et al. (2018)  have reported 

suitability of RGB based VIs for early season crop 

monitoring whereas MSS data for later season analysis 

of the crops. Further, Sandino et al. (2018) have used 

UAV-based hyperspectral images for mapping of 

Pathogens affected forest trees. Thus, UASs based RGB, 

MSS and hyperspectral datasets are available for 

analysis of biophysical parameters of the Earth surface 

using VIs for sustainable land management.   
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Table 2. Unmanned Aerial System Sensors 

Sensor Bands Spatial 

resolution 

(cm) with 

flying height 

(m) 

Authors Calibration  

RGB R, G, B 0.51 (20) to  

0.84 (30) 

0.94(50) 

5 (97) 

 

Yeom et al. (2019) 

Niu et al. (2019) 

Gracia-Romero et 

al., (2019) 

Marino and Alvino 

(2019) 

Reflectance panel 

Camera dedicated to incident 

light sensor 

NIR RE and NIR 

 

G, R and NIR 

1.58 to 1.69 

(40) 

10(286) 

Yeom et al. (2019) Ambient illumination sensor 

RGB and 

NIR 

R, G, B and NIR 3(100) Wahab et al. (2018); 

Marino and Alvino 

(2019) 

Teflon calibration panel. 

MSS R, G, B, NIR, RE  

Six bands 

 

12 bands: RGB, RE 

and NIR 

1.2 (12) 

(50 

suggested) 

2.6 (120) 

Javan et al. (2019) 

Guo et al. (2019) 

 

Jiang et al. (2019) 

Mini MCA 6 sensor 

 

 

Empirical linear model.    

NDVI and RGB  5 (90) Caturegli et al. 

(2019) 

UAV based NDVI compared 

with ground based NDVI.  

Hyperspectral  274 bands  Sandino et al. (2018)  

RGB, MSS and 

Hyperspectral 

RGB 

MSS: B,G,RE and 

NIR 

Hyperspectral: 274  

3.26 (60) Vanegas et al. (2018) Mica sense reflectance board 

RGB 

MSS 

RGB 

R, G, B, NIR, RE 

2.02-3.0(40-

50) 

Durfee et al. (2019) Resolutions vary according to 

the imagery and flying scheme.  

 

2.2 Flying Time and Height 

The flying time affects the sun light and angle, weather, 

atmospheric transference, plant phenology, etc. 

therefore, someone can select flying time considering 

these points. Lower sun angle gives higher contrast 

between red and green bands (Larrinaga and Brotons, 

2019). However, Larrinaga and Brotons (2019) didn’t 

find remarkable difference in performance of greenness 

indices calculated using data captured at different 

altitude. However, cell statistics and selection of optimal 

greenness index are depending on flying height of UAV. 

Image resolution varies according to the flying height 

(refer section 2.3: resolution) (Table 2). Therefore, 

researchers and UAS managers should carefully record 

the flying time and height arranged for RS data 

capturing. However, Larrinaga and Brotons (2019) have 

reported no-effect of flying heights (50 and 120m) on 

modeling for estimations for post-fire regenerations of 

Mediterranean forests.     

2.3 Spatial Resolution 

Traditionally, course resolution images captured using 

standard remote sensing camera installed on manned 

aircrafts have been used to meet requirements of small 

object detections (Casado et al., 2016). UAS provides 

data at fine resolution (finer than 1cm) with desired 

temporal resolution (Sankaran et al., 2015). This 

technology is very promising for management of 

precision agriculture due to fine resolution. Finer spatial 

and desired temporal resolution allows detecting the 

plant growth patterns (Yeom et al., 2019), disease 

effects (Javan et al., 2019), etc. Yeom et al. (2019) have 

used data UAV based MSS images at resolution of 0.51 

to 0.84 cm (RGB) and 1.58 to 1.69 cm (NIR) for 

analysis of tillage effects in agriculture using VIs. Javan 

et al. (2019) have used UAV MSS image at 2 cm 

resolution for detection of greening disseized Citrus 

trees in Iran. Niu et al. (2019) acquired the data at 0.8 

cm resolution for estimation of AGB of Maize crop. 

Caturegli et al., (2019) used UAV based images at 5 cm 

for detection of N content in plant leaf using NDVI and 

DGCI. Further, Casado et al. (2016) have used three 

UAV resolutions: 2.5, 5 and 10cm for automated Hydro-

morphological characterization of 1.4 km river reach. 

Resolution vary according to flying height and 

suggested effective flying height is 50 m to capture the 

UAV based images (Guo et al., 2019).  Oliveira et al. 

(2019) have achieved 0.7 cm and 5 cm ground 
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resolution for photogrammetric and hyperspectral 

imageries captured at 50 flying height. Buchaillot et al. 

(2019) have used UAV RGB images of 0.03 cm/pixel 

captured at same flying height (50m) for calculation of 

VIs. Durfee et al. (2019) have achieved higher spatial 

resolution for RGB images than the MSS. Thus, images 

captured using UASs can give very finer resolution (less 

than 1 cm e.g. 0.5 cm) which varies according to the 

flying height of the UAV.   

3 TECHNIQUES USED FOR REMOTE 

SENSING OF LAND  

3.1 Radiometric Corrections 

Simply ground reflectance panel, ambient illumination 

sensors and mean DN values calculated using white 

reference were used for calibration of UAV based 

sensing images (Yeom et al., 2019; Javan et al., 2019). 

Yeom et al. (2019) have calibrated images using ground 

reflectance panel and ambient illumination sensors for 

frame to frame to characterization for precise 

comparisons throughout day and growing season. Javan 

et al. (2019) have used reflectance panel and mean DN 

values calculated for values of images collected before 

and after flight for all 5 bands (Javan et al., 2019). Guo 

et al. (2019) have used three pseudo targets and four 

boards radiometric calibration using handheld device 

specially designed for spectral measurements. However, 

calibration of images captured using UAV platforms is 

quite difficult due to small FOC and different imaging 

conditions for each image (Guo et al., 2019). Most of 

time researchers are using UAV based images without 

calibration or with coarse calibrations (Guo et al., 2019). 

Therefore, Guo et al. (2019) have used linear regression 

model for calibration of UAV based MSS images 

captured at different height for vegetation analysis using 

VIs. They have reported that atmospheric distortions 

appear more in images with increasing platform height 

and suggested universal calibration equation and LRM 

for images acquired sunny, little cloudy and cloudy 

weather. RGB images preferred for cost-effective 

operations without calibration systems. Therefore, they 

need to be calibrated using reflectance panels (Yeom et 

al., 2019). Linear calibration model was found useful to 

calibrate the image digital numbers with corresponding 

ground reflectance values (Yeom et al., 2019).    

Normalized RGB bands (equations (1, 2 and 3)) 

were used before calculation of VIs in many research 

projects (Beniaich et al., 2019; Li et al., 2019; Yeom et 

al., 2019, etc.). However, many studies have used RGB 

data without this normalization for different applications 

like crop yield (Wahab et al., 2018). Further, Larrinaga 

and Brotons (2019) have used normalized ‘G’ as GCC 

[green chromatic coordinate] for calculation and 

successfully used for estimations of post fire 

regeneration of forests with higher accuracy than ExGI.  

Researchers have used band conversions for 

specific studies using UAV data. Technique suggested 

by Karcher and Richardson (2013) was used for 

conversion of RGB pixel values into HSB [Hue, 

Saturation and Brightness] values for analysis of leaf 

nitrogen status (Caturegli et al., 2019). DN values were 

transformed to surface reflectance using empirical linear 

model using six nominal reflectance values to calculate 

the canopy surface of Rice crop (Jiang et al., 2019). 

Ribeiro-Gomes et al. (2017) have calibrated thermal 

cameras using a blackbody source Hyperion R Model 

982 for UAV application of agriculture. Thus, some of 

them have used different models and techniques for 

radiometric calibration of UAV base RS datasets.       

3.2 Geo-referencing 

Image clarity and analytical preciseness are fully relied 

on geo-referencing of image captured using multi-lens 

sensors (Javan et al., 2019). Distortions in color 

presentation increase with increasing number of pixels 

as error in registration. Ortho-mosaic image generation 

based geo-referencing of captured images has been used 

to achieve acceptable error (Javan et al., 2019). Javan et 

al. (2019) have accepted error less than pixel size (0.6). 

Locational information (latitude, longitude and height) 

of Ground Control Points (GCP) was commonly used to 

achieve geometric accuracy of UAV based images 

(Vanegas et al., 2018; Guo et al., 2019). Wahab et al. 

(2018) have used     subplots for geo-referencing the 

images in GIS environment. Vanegas et al. (2018) have 

used Geoscience Australia online service selection of 

precise (3cm accuracy) GPS points instead of GPS 

information with course accuracy (5 to 10 m). Internal 

navigation systems with GPS are helpful to solve the 

problem of geo-referencing of RS images (Lulla et al., 

2004). Further, Masiero et al. (2017) have used low cost 

Ultra-Wide-Band (UWB) system for direct geo-

referencing of UAV based images with average ground 

positioning error of about 0.18 m.  

3.3 Spectral Indices  

Vegetation indices calculated based on images captured 

using UAV have been widely used for vegetation 

analysis, monitoring water bodies, preparation of DEM, 

etc. Themistocleous (2019) has compared efficiency of 

six VIs (RGI, RGBVI, GLI, VARI, NGRDI and 

ERGBVE) for preparation of DEM and found Enhanced 

Red-Green-Blue Vegetation Index (ERGBVE) more 

useful. Themistocleous (2019) has claimed his invention 

to the ERGBVE. Vegetation indices have been used for 

monitoring small water bodies (Cermakova et al., 2019). 

UAV based RGB VIs gives similar results for crop 

performance to ground based data (Gracia-Romero et 

al., 2019). 

VIs is widely used for agricultural applications 

including estimations of leaf area, canopy analysis, plant 

nutrients (nitrogen status), biomass estimations, crop 

yield, etc. Researchers have estimated good relationship 

of VIs with measured plant nutrients (Walsh et al., 

2018). Walsh et al. (2018) have successfully analyzed 

Nitrogen (N) concentration in leaves of Spring wheat in 

USA. They found ‘one to one’ relationship with 

estimated N concentration measured for NDVI and 
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model-based relationship of         with measured 

values of plant N. Further, Buchaillot et al. (2019) have 

evaluated performance of Maize Genotype under low N 

condition using NDVI and leaf Chlorophyll content 

calculated UAV-based image RGB data. Caturegli et al. 

(2019) have compared the efficiency of NDVI with 

DGCI for detection of life nitrogen content on Bermuda 

grass hybrid and tall fescue in Pisa. DGCI shows 

significant correlation with N content in plant life 

(Caturegli et al., 2019). Javan et al. (2019) have used 16 

VIs for detection of greening diseased Citrus plants in 

Iran using MSS data captured by UAV based remote 

sensors. Niu et al. (2019) have been successfully used 

VIs calculated using UAV-RGB VIs with optimized 

model for estimation of AGB. They have combined VIs 

values with modeled plant height for estimations of 

AGB. 

VI indices can be useful to detect and calculate 

disease severity based on physiological status of tree 

leaves including biomass, leaf area, chlorophyll, water 

content, carotenoid content, anthocyanin content, etc. 

(Bendig et al., 2015; Jansen et al., 2014). Jansen et al., 

(2014) have calculated NDVI, PRI [Photochemical 

Reflectance Index], SIPI [Structure Insensitive Pigment 

Index], PSSR [Pigment Specific Simple Ratio] WI 

[Water Index], CRI [Carotenoids Reflectance Index], 

ARI [Anthocyanin Reflectance Index], PSND [Pigment 

Specific Normalized Difference], NDWI [Normalized 

Difference Water Index], LWI [Leaf Water Index] and 

CLSI [Cercospora Leaf Spot Index] for analysis of 

physiological status of vegetation. Bendig et al. (2015) 

have invented MGRVI and the RGBVI for biomass 

estimations of crops. Larrinaga and Brotons (2019) have 

calculated ExGI [Excess Green Index], GCC [Green 

Chromatic Coordinate], VARI [Visible Atmospherically 

Resistant Index] and GRVI [Green Red Vegetation 

Index] for post fire analysis of the forest.

   

Table 3. Unmanned Aerial System based Vegetation Indices 

Techniques Descriptions Authors 

RGB normalization   

R   
 

     
   (1) Li et al. (2019); 

Beniaich et al. (2019) 
G   

 

     
   (2) Li et al. (2019); 

Beniaich et al. (2019) 
B   

 

     
  (3) Li et al. (2019); 

Beniaich et al. (2019) 

Larrinaga and Brotons (2019) 

Difference Vegetation 

Index 
             (4) Albetis et al. (2017) 

Greenness Index    
 

 
   (5) Javan et al. (2019) 

Albetis et al. (2017) 

Red-Green Ratio Index 

(RGRI) 
     

 

 
  (6) Wan et al. (2018) 

Green Ratio Vegetation 

Index (Modified 

Anthocyanin Content 

Index) 

     
   

 
  (7) Javan et al. (2019) 

Albetis et al. (2017) 

Anthocyanin Content 

Index 
    

 

   
   (8) Albetis et al. (2017) 

Simple Ratio Index     
   

 
  (9) Wan et al. (2018) 

Javan et al. (2019) 

Modified Red Edge 

Simple Ratio 
    

     

    
  (10) Javan et al. (2019) 

Normalized Difference 

Vegetation Index 
     

     

     
  (11) Javan et al. (2019); 

Yeom et al. (2019) 

Sandino et al. (2018) 

Albetis et al. (2017);  

Durfee et al. (2019) 

Soil-Adjusted 

Vegetation Index 
     

             

       
   (12) Albetis et al. (2017) 

Optimized Soil-Adjusted 

Vegetation Index 

(OSAVI) 

      
     

          
  (13) Marino and Alvino (2019) 

Renormalized 

Difference Vegetation 
      

     

√     
  (14) Javan et al. (2019) 
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Index 

Normalized Green 

Difference Vegetation 

Index 

      
     

     
 (15) Wahab et al. (2018); 

Sandino et al. (2018) 

Javan et al. (2019); 

Yeom et al. (2019) 

Albetis et al. (2017) 

Green-Red Vegetation 

Index (G-Rvi) 
      

   

   
  (16) Javan et al. (2019) 

Themistocleous (2019);  

Yeom et al. (2019) 

Niu et al. (2019) 

Albetis et al. (2017) 

Structure Insensitive 

Pigment Index 
     

     

     
  (17) Javan et al. (2019) 

Modified Red Edge 

Normalized Difference 

Vegetation Index 

      
      

         
  (18) Javan et al. (2019) 

Red Edge Normalized 

Difference Vegetation 

Index 

       
      

      
  (19) Javan et al. (2019); 

Yeom et al. (2019) 

Triangular Vegetation. 

Index 
                                     (20) Javan et al. (2019) 

Modified Triangular 

Vegetation Index-1 
                               (21) Javan et al. (2019) 

Modified Triangular 

Vegetation Index-2 
      

                        

√          (      √  )    

  (22) Javan et al. (2019) 

Modified Chlorophyll 

Absorption In 

Reflectance Index 

                                           
(23) 

Javan et al. (2019) 

Chlorophyll Index    
   

 
    (24) Javan et al. (2019);  

Yeom et al. (2019) 

Red Edge Chlorophyll 

Index 
     

   

  
    (25) Yeom et al. (2019) 

Albetis et al. (2017) 

 

Infrared Percentage 

Vegetation Index 
     

   

     
  (26) Javan et al. (2019) 

Normalized Excess 

Green Index 
                         (27) Yeom et al. (2019) 

Wan et al. (2018) 

Cermakova et al. (2019) 

Normalized Green-Red 

Difference Index 

 

                   (28) Wan et al. (2018) 

Cermakova et al. (2019); 

Buchaillot et al. (2019); 

Li et al. (2019);  

Larrinaga and Brotons (2019) 

Modified Green-Red 

Difference Index 
                       (29) Li et al. (2019) 

Yeom et al. (2019) 

Woebbecke Index                 (30) Li et al. (2019) 

Kawashima Index                 (31) Li et al. (2019) 

Red-Green-Blue 

Vegetation Index 
                                  
(32) 

Cermakova et al. (2019); 

Li et al. (2019) 

Anthocyanin 

Reflectance Index 
                       (33) Albetis et al. (2017) 

Modified Anthocyanin 

Reflectance Index 
                             (34) Albetis et al. (2017) 

Normalized Difference 

Spectral Index (NDSI: 

944, 758) 

 

                    (35) 

 

Wan et al. (2018) 

Visible Atmospherically 

Resistant Index 
                    (36) Cermakova et al. (2019); 

Eng et al. (2018) 

Larrinaga and Brotons (2019) 
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Enhanced Red-Green-

Blue Vegetation Index  
                                   
(37) 

Themistocleous (2019) 

Excess RGB Indies   

Excess Green 

Vegetation Index 
              (38) Cermakova et al. (2019); 

Li et al. (2019);  

Yeom et al. (2019) 

Excess Red Vegetation 

Index 
              (39) Li et al. (2019) 

Excess Blue Vegetation 

Index 
              (40) Li et al. (2019) 

Excess Green Minus 

Excess Red 
                    (41 ) Li et al. (2019); 

Yeom et al. (2019);  

Holman et al. (2019) 

Vegetative             ,         (42) Wan et al. (2018) 

Li et al. (2019) 

Texture Indices   

Normalized Difference 

Texture Indices 
                             (43) Li et al. (2019) 

Soil Adjusted 

Vegetation Index 
     

            

       
 ,        (44) Sandino et al. (2018) 

Yeom et al. (2019) 

Optimized Soil Adjusted 

Vegetation Index 
      

            

       
 ,         (45) Yeom et al. (2019); 

Durfee et al. (2019) 

Modified Soil Adjusted 

Vegetation Index 
      

       √                  

 
   (46) 

Yeom et al. (2019) 

Dark Green Color Index      [
        

  
 (              )|  

                     (47) 

Caturegli et al. (2019) 

Phylloxera Indeces                             (48) 

                            (49) 

                            (50) 

                            (51) 

                            (52) 

                            (53) 

Vanegas et al. (2018) 

Color Index of 

Vegetation  
                                    
          (54) 

Wan et al. (2018) 

Niu et al. (2019) 

Total Ratio Vegetation 

Index 
                             (55) Durfee et al. (2019) 

Triangular Greenness 

Index  
                                 
     (56) 

Durfee et al. (2019) 

Vegetation Index      
  

     
      

          (57) Niu et al. (2019) 

 

Researchers have used VIs for analysis of 

vegetation fractions, plant growth, crop height and yield, 

crop diseases, etc. Marcial-Pablo et al. (2018)  have 

used three RGB based Excess Green (ExG), Color Index 

of Vegetation (CIVE), and Vegetation Index Green 

(VIg) and three NIR-based Normalized Difference 

Vegetation Index (NDVI), Green NDVI (GNDVI) and 

Normalized Green (NG) for estimation of vegetation 

fractions. Yeom et al. (2019) have analyzed 5 RGB and 

8 NIR based VIs for plant growth comparison from 

conventional tillage (CT) and no-tillage (NT) fields. 

Crop yield has relationship with crop height which can 

be detected using UAV based images (Fathipoor et al., 

2019). Fathipoor et al. (2019) have estimated crop yield 

using VIs viz. visible atmospherically resistant index, 

NDVI and excess red in combination of estimated crop 

height estimated using UAV based DEM model. 

Sandino et al. (2018) have calculated NDVI, GNDVI, 

SAVI and MSAVI2 using UAV-based hyperspectral 

data for mapping of Pathogens affected forest trees. 

MSAVI and OSAVI are found more useful for plant 

growth analysis (Yeom et al., 2019). Albetis et al. 

(2017) have used different vegetation indices for 

detection and comparison with biophysical parameters 

for analysis of Grapevine disease using images captured 

by UAV. 

3.4 RGB-Vegetation Indices  

UAV-RGB based vegetation indices have great potential 

of high precision and low cost assessment, planning and 

monitoring of agriculture, water resources, settlements, 

deserters, etc. Caturegli et al. (2019) have used RGB 
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based vegetation indices for analysis and mapping of 

crop nitrogen at large area. Buchaillot et al. (2019) have 

reported better potential of UAV based RGB VIs for 

estimations of crop analysis.     

Kauth and Thomas (1976) have transformed row 

Landsat data into greenness index. Larrinaga and 

Brotons (2019) have calculated the greenness indices 

(ExGI, GCC, GRVI and VARI) for analysis of post fire 

regeneration of Mediterranean forests. Wan et al. (2018) 

have used Red-Green Ratio Index (RGRI) for 

estimations of crop flower numbers (Table 3). RGRI 

index is useful ‘to analysis the angular sensitivity of 

vegetation indices’ (Wan et al., 2018) and referred as an 

index of anthocyanin content in vegetation (Gamon and 

Surfus, 1999).  

Several researchers have used Normalized Green-

Red Difference Index (NGRDI) after Rouse et al. (1973) 

analysis of vegetation covers (Larrinaga and Brotons, 

2019). Green vegetation reflects maximum amount of 

energy in the form of green and NIR spectral bands. 

They absorb radiations through blue and red spectral 

bands (Jiany et al, 2008). Therefore, this index is similar 

to NDVI calculated using band-G and -R of RGB 

image. Green reflects more than red from vegetation, 

red reflected more than green from soil and almost same 

reflectance occurred from water and ice. Therefore, 

NGRDI estimates positive, negative and near-zero for 

vegetation, soils and water-snow. This is promising 

indices for estimations of biomass (Bendig et al., 2015). 

Wan et al. (2018) have used this index for estimations of 

flowers of oilseeds. Further, Buchaillot et al. (2019) 

have used NG-RVI for estimation of N in maize crops in 

Nigeria. This index shows difference and signal 

structure than the NDVI.    

NGRDI is similar to NDVI for calculations 

(Buchaillot et al., 2019).  Buchaillot et al. (2019) have 

calculated NGRDI (equation) using UVA based RGB 

data for estimations of crop yield: 

      
         

         
  (58) 

Further, Buchaillot et al. (2019) have reported new RGB 

based VIs: NDLab and NDluv indices with performance 

similar to grain yield (GY) models.     

                   (59) (Cermakova et al., 

2019) 

Excess Green Red (ExGR) index (equation (4)) is 

useful for analysis of complex canopy structure (Wan et 

al., 2018). Therefore, this index shows significant 

agreement with green vegetation and used to mask the 

area with green vegetation (Threshold >0) (Holman et 

al., 2019). Larrinaga and Brotons (2019) have used 

successfully ExGR for analysis post fire regeneration of 

forest. It was used for estimations of crop flower 

numbers (Wan et al., 2018). 

               (60) (Cermakova et al., 

2019) 

ExGR shows potential to get precise vegetation 

differences (Yeom et al., 2019) and Beniaich et al. (2019) 

have reported better performance for soil cover analysis.  

Further, Cermakova et al. (2019) have used Normalized 

Excess Green Index (equation (61)): 

                           (61)

 (Cermakova et al., 2019) 

This index is known as different names like Leaf 

Area Index (LAI), Green Leaf Index (GLI), Red Green 

Blue Vegetation Index (RGBVI), etc.  

Bendig et al. (2015) have developed Red-Green-

Blue Vegetation Index (RGBVI) (equation (62)) for 

estimation the plant height to estimate biomass of 

summer barley crop.  

                            
        (62) (Cermakova et al., 2019) 

They have reported potentials of RGBVI for 

vegetation analysis with need of further testing in 

different geophysical environmental situations. 

Modified GRVI (MGRVI) can be considered as an 

indicator of plant phenology and useful for estimations 

of biomass (Wan et al., 2018). MGRVI shows potential 

of precise differences in vegetation characteristics 

(Yeom et al., 2019). Therefore, Bendig et al. (2015) 

have modified GRVI (MGRVI) for estimation of the 

plant height to estimate biomass of summer barley crop. 

Wan et al. (2018) have used this index for estimating the 

number of flowers of oilseeds. Further, Excess Green 

Minus Excess Red (EXGR) proposed by Meyer and 

Neto (2008) have been suggested for separation from 

soil and backgrounds (Beniaich et al., 2019). They have 

used normalized values for RGB for estimations of 

EXGR. Themistocleous (2019) has calculated Enhanced 

Red-Green-Blue Vegetation Index (ERGBVE) and 

found more efficiency for estimation of DEM compared 

to other VI.   

Dark Green Color Index (DGCI) values vary from 

0 (very yellow) to 1(dark green). Caturegli et al. (2019) 

have calculated DGCI pixel values from RGB pixel 

values and compared with NDVI values to check the 

efficiency for detection of leaf nitrogen content. Further, 

Gitelson et al. (2002) have used Visible 

Atmospherically Resistant Index (VARI) for correction 

of indices for atmospheric effects. This index shows 

significant correlation with crop height estimated using 

UAV based DEM and crop yield in Iran (Fathipoor et 

al., 2019). Wan et al. (2018) have used this index for 

estimations of flower numbers of oilseed rape. Larrinaga 

and Brotons (2019) have compared VARI (equation 

(63)) for analysis of post fire analysis of forest cover.   

                    (63) (Cermakova et 

al., 2019).  

Excess Red shows positive correlation with crop 

height estimated using DEM prepared based on AUV 

images (Fathipoor et al., 2019). Wan et al. (2018) have 

used color index for flower number estimations for 
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oilseed crops.  Niu et al. (2019) have used CIVE for 

estimation for AGB in China.  Vegetativen (VEG) was 

also used for estimations for flowering classes of oilseed 

by Wan et al. (2018).  

3.5 NIR-Vegetation Indices 

3.5.1 Simple Ratio Index 

SRI is mainly relating with crop physiology (Wan et al., 

2018). Wan et al. (2018) have used simple ratio index 

(equation (64)) for estimations of flower numbers of 

oilseeds after Jordan (1969). Leaves absorb red than the 

infrared therefore greater ratio represents comparatively 

more canopy cover (Jordan, 1969). Wan et al. (2018) 

found significant correlation with number of flowers of 

oilseeds.   

    
    

    
   (64) 

3.5.2 Normalized Difference Vegetation Index 

(NDVI) 

Since NDVI was invented (1970), various VIs was 

developed using new spectral bands according to 

objectives of the study (Yeom et al., 2019). Rationing is 

the strength of NDVI which reduces multiplicative noise 

in multi-image data (Bhagat, 2012). Band-Red has 

ability to discriminate contrast between vegetation and 

non-vegetation whereas NIR is more sensitive to plant 

Chlorophyll. Therefore, NDVI is more superior than the 

RGB based indices. UAV based VIs show significant 

relationship with remote sensing based NDVI (Schut et 

al., 2018). Therefore, UAV-based NDVI was used 

widely for vegetation analysis including forest 

classification, plant stress analysis (Caturegli et al., 

2019), crop nutrient detection (Walsh et al., 2018; 

Buchaillot et al., 2019; Caturegli et al., 2019), 

crop/plant disease detection (Albetis et al. 2017; Javan 

et al., 2019), etc. 

Caturegli et al. (2019) have successfully collected 

ground based direct NDVI output of captured 

reflectance at Red region (660 nm) and NIR region (780 

nm) using Handheld Crop Sensor (HCS) for estimations 

of leaf nitrogen content. Holman et al. (2019) have 

reported the poor accuracy of NDVI calculated from the 

image captured using altered camera from R to NIR. 

Ratio between red and NIR remain unchanged when 

biomass increases (Jiang et al., 2019). Therefore, Jiang 

et al. (2019) have combined NDVI data with TIN based 

structural feature for precise estimation of AGB of rice 

crop. Fathipoor et al. (2019) have found significant 

correlation of NDVI with crop height and crop yield. 

Albetis et al. (2017) have compared NDVI with 

biophysical characteristics for detection of vineyard 

disease. Marino and Alvino (2019) have used this index 

for analysis of variability in vegetation cover. However, 

NDVI is not able to distinguish the typical disease (viz. 

phylloxera infestation) stress from stress cases by other 

sources and thermal imagery suggested to overcome this 

limitation (Vanegas et al., 2018).  

3.5.3 Green Normalized Difference Vegetation Index 

(GNDVI) 

Green Normalized Difference Vegetation Index is 

similar to NDVI uses visible band-green instead of 

band-red (Sankaran et al., 2015). Band-INR and G have 

good abilities to estimate the density and intensity of 

vegetation cover using solar radiation (Wahab et al., 

2018). Reflectance in band-G is more sensitive to plant 

leaf Chlorophyll and plant health (Wahab et al., 2018). 

Burke and Lobell (2017) pointed that Band-G is more 

useful to capture the disparity in nutrient deficiency and 

therefore crop yield. Therefore, this index is more 

sensitive to wide range of Chlorophyll and efficient for 

vegetation analysis than the Normalized Difference 

Vegetation Index (NDVI) (Gitelson and Merzlyak, 

1998). Wahab et al. (2018) have calculated the GNDVI 

for estimation of vigor and yield of Maize crop. It also 

shows stronger relation with drought stressed and non-

stressed condition crops. Marcial-Pablo et al. (2018) 

reported superiority of GNDVI for vegetation fraction 

analysis.  

Further, Marino and Alvino (2019) have used 

Soil-adjusted vegetation index (OSAVI) for estimation 

of variation in vegetation cover of wheat for yield 

analyses. Leaf Water Index (LWI) and Two-

Dimensional Smoothing Kernels also used for this 

analysis.  

3.5.4 Combinations of Indices (COI) 

Some of the researchers have combined RGB indices for 

detection and estimations of AGB above ground 

biomass]. Niu et al. (2019) have combined (equation 

(65)) ExG, ExGR, CIVE and VEG for this purpose as: 

                                   
                  (65) after Niu et al. (2019) 

Wan et al. (2018) have suggested combinations of 

various VIs (RGRI and NDSI (944, 758)) calculated 

using UAV-based RGB datasets for estimations for 

flowing numbers of oilseed ripe.   

3.5.5 Estimation, Prediction and Classification 

Techniques 

Researchers have used Support Vector Machine (SVM), 

Point Cloud (PC), Simple Linear Regression (SLR), 

Simple Exponential Regression, Random Forest (RF), 

Partial Least Squares Regression (PLSR) Model, Digital 

Vigor Model (DVM), K-means method for classification 

of UAS based RS images for different uses (Table 4).  

SVM is classification technique widely used for 

detection of disparity, land, visitation (plants, crops), 

etc.  (Javan et al., 2019). Javan et al. (2019) have used 

SVM to detect non-tree space within a plantation (Citrus 

trees), healthy and diseased trees. Durfee et al. (2019) 

have used this technique for classification of vegetation 

over a watershed.  

Point cloud technique was used for preparation of 

DEM using ERGBVE (Themistocleous, 2019).  Point 
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cloud data was used to acquire TIN structures of rice 

plots in Switzerland based on UAV data (Jiang et al., 

2019). This method was used for estimation of plant 

height for calculation of AGB of maize (Niu et al., 

2019). Park et al. (2019) have used statistical 

techniques: mean, median and standard deviation for 

detection of leaf cover of individual tree using RGB 

Chromatic Coordinates, excess green, green vegetation, 

non-photosynthetic indices, etc.  Kerle et al. (2020) have 

showed applicability of 3D point clouds for highly 

detailed and accurate scene reconstruction to recognize 

the features.  

Simple Linear Regression (SLR) was used of 

AGB of rice using multiple indices, TIN based structural 

feature of plots, meteorological data (Jiang et al., 2019).  

Simple Exponential Regression (SLR) was used of AGB 

of rice using multiple indices, TIN based structural 

feature of plots, meteorological data (Jiang et al., 2019).  

Buchaillot et al. (2019) have reported better 

performance of multivariate regression models 

calculated based on RGB indices for estimations of 

agronomic parameters. Further, they have calculated 

grain Yield Loss Index (GYLI) for analysis of 

variability in crop productions. Fathipoor et al. (2019) 

have established Partial Least Squares Regression 

(PLSR) Model using plant height estimated using AUV-

RGB based DEM for estimation of crop yield in Iran. 

Jiang et al. (2019) have used Random Forest (RF) 

method for combing the UAV based MSS, structural 

and metrological data for estimation of AGB of rice 

crop. Wan et al. (2018) have used this technique for 

prediction of flower number using UAV-RGB data for 

oilseed rape. Oliveira et al. (2019) have reported better 

performance of RF than multiple linear regression 

calculated from RGB and hyperspectral datasets for 

estimation and validation of grass.  Further, Digital 

Vigor Model (DVM) has been obtained from Digital 

Surface Model (DSM) and Digital Terrain Model 

(DTM) established base on AUV-RGB images 

(Vanegas et al., 2018). Wan et al. (2018) have used K-

mean method for identification of flower coverage area 

of oilseed rape. 

 One-tailed Z-test was used to test the significance 

of relationship between VIs and study objects. Yeom et 

al. (2019) have conducted this test to find the 

significance of VIs difference with tillage and non-

tillage treatment in agriculture.      

Accuracy of estimated results has been achieved 

more than 95% using UAV remote sensing technique. 

Javan et al. (2019) have been detected and classified 

diseased Citrus trees at more than 95% accuracy.        

  

Table 4. Estimation, Predictions and Classification techniques 

Technique Data Authors Applications 

Simple Linear 

Regression (SLR) 

RGB (3 bands) 

MSS (5 bands) 

Li et al. (2019) 

Jiang et al. (2019) 

 

Guo et al. (2019) 

Estimation of LAI using VIs. 

Estimation of plant based on using 

indices.  

To calibrate the MSS images in little 

cloudy and cloudy weather. 

Multiple Linear 

Regression (MLR) 

RGB (3 bands) Li et al. (2019) Estimation of LAI using VIs. 

Partial Least 

Squares Regression 

(PLSR) 

RGB (3 bands) Li et al. (2019) Estimation of LAI using VIs. 

Simple Exponential 

Regression (SER) 

MSS (12 bands) Jiang et al. (2019) To estimate the AGB of rice crop. 

Random Forest (RF) RGB (3 bands) Li et al. (2019) Estimation of LAI using VIs. 

Principal 

Component 

Regression (PCR) 

RGB (3 bands) Li et al. (2019) Estimation of LAI using VIs. 

Support Vector 

Machine (SVM) 

MSS (5 bands) Javan et al. (2019) 

 

 

Li et al. (2019) 

Durfee et al. (2019) 

To detect the tree and non-tree objects. 

To detect the Greening disease of citrus 

trees. 

Estimation of LAI using VIs. 

Canopy classification over a watershed. 

Point Cloud RGB (3 bands) 

MSS (5 bands) 

Themistocleous 

(2019) 

Jiang et al. (2019) 

To prepared the DEM. 

To estimate the TIN based structural 

aspects of the rice plots.  

Universal 

Calibration 

Equation 

MSS (6 bands) Guo et al. (2019) 

 

To calibrate the MSS images in little 

cloudy and cloudy weather.  
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4 FINDINGS AND CONCLUSIONS 

1. The market revenue of UAS based remote sensing 

and mapping is bumming since last decade.   

2. UAS based RS techniques are widely used for 

analysis of vegetation cover, agriculture, hydro-

geomorphological aspects, hydrology, water 

conservation programs, water qualities, river 

characteristic as well as for soil management, 

urban mapping, disaster management, etc.  

3. Timely, intensive, cost effective and efficient data 

collection with less labor and time can be possible 

using UAV systems (Yeom et al., 2019).  

4. UASs based RGB, MSS and hyperspectral datasets 

are available for analysis of biophysical parameters 

of the Earth surface. 

5. MSS sensors more costly than the RGB sensors 

(Marcial-Pablo et al., 2018). 

6. Some studies have been conducted to analyze the 

impacts of changes in flight height on number of 

detected features and definition of ground truth 

information (Javan et al., 2019). Image resolution 

varies according to the flying height. 

7. UAS provides data at fine resolution (finer than 

1cm) with desired temporal resolution. 

8. The atmospheric distortions appear more in images 

with increasing flying height (Guo et al., 2019). 

9. Flying time affects the sun light and angle, 

weather, atmospheric transference, plant 

phenology. 

10. Ground reflectance panel, ambient illumination 

sensors and mean DN values calculated using 

white reference were effectively used for 

calibration of UAV based sensing images. 

11. The universal calibration equation is more suitable 

for calibration of images acquired sunny and little 

cloudy commissions (Guo et al., 2019). 
12. Normalized RGB bands were used before calculation of 

VIs in many research projects. 

13. Image clarity and analytical preciseness are fully 

relied on geo-referencing of image captured using 

multi-leans sensors. 

14. Several USA based RGB and NIR VIs have been 

used for different parameters of the Earth surface.   

15. VIs is widely used for agricultural applications: 

leaf area estimations, canopy analysis, plant 

nutrients analysis (nitrogen status), biomass 

estimations, plant growth, crop yield estimations, 

etc. 

16. VIs correlate with disease severity based on 

vegetation physiology status: tree leaves including 

biomass, leaf area, chlorophyll, water content, 

carotenoid content, anthocyanin content, etc. 

(Jansen et al., 2014)  

17. UAV-RGB based vegetation indices have great 

potential of high precision and low-cost 

assessment, planning and monitoring of 

agriculture, water resources, settlements, deserters, 

etc. 

18. Normalized Green-Red Difference Index (NGRDI) 

is similar to NDVI and useful to analyze the 

vegetation covers. 

19. Excess Red shows positive correlation with crop 

height estimated using DEM prepared based on 

AUV images. 

20. RGB based ExG is best option for cost reduction 

for early season crop monitoring.     

21. RGB based VIs and models are efficient for 

estimations of AGB (Niu et al., 2019).  

22. ExG, CIVE and Vegetativen are useful for 

delineation of levels of green vegetation (Wan et 

al., 2018). 

23. NGRDI, RGRI and MGRVI show significant 

correlations with number of flowers of oilseeds 

(Wan et al., 2018). 

24. NIR based VIs are found more superior than RGB 

VIs to find precise vegetation differences (Yeom et 

al., 2019). 

25. UAV-based NDVI was used widely for vegetation 

analysis including forest classification, plant stress 

analysis, crop nutrient detection, crop/plant disease 

detection, etc. 

26. NDVI is not able to distinguish the typical disease 

(viz. phylloxera infestation) stress in vegetation, 

therefore other sources and thermal imageries are 

suggested to overcome these limitations. 

27. GNDVI shows stronger relation with drought 

stressed and non-stressed condition crops. 

28. GNDVI is reported superior for analysis of 

vegetation fractions in cropping area (Marcial-

Pablo et al., 2018). 

29. Combination of MSS and TIN based structural 

data gives more precise results than use of any data 

alone (Jiang et al., 2019).  

30. SLR, SER and RF are useful techniques for 

combining the UAV based data and indices with 

different type of data like TIN based structural 

features, meteorological data, etc. (Jiang et al., 

2019).  

31. Similar performance was observed in case UAV 

base RGB VIs to ground based data for crop 

performance: crop yield (Gracia-Romero et al., 

2019).   

32. Support Vector Machine (SVM), Point Cloud, 

Simple Linear Regression (SLR), Simple 

Exponential Regression, Random Forest (RF), 

Partial Least Squares Regression (PLSR) Model, 

Digital Vigor Model (DVM), K-means are the 

method for classification of UAS based RS images 

for different uses. 

Limitations of the UAV systems are: limited 

coverage and battery, flight limitations in windy 

weather, safety problems, (Yeom et al., 2019), higher 

initial costs, sensor capability, image processing and 

final products dissemination (Zhang and Kovacs, 2012). 

Image distortions from camera and environmental 

factors are weakening the applicability of the UAV RS 

techniques (Holman et al., 2019).  
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No significant improvement was found in 

correlation of VIs with AGB in multivariable linear 

regression model (Niu et al., 2019). They have 

suggested machine learning techniques for better 

estimations. VIs base vegetation status analysis does not 

allow differentiation between the diseases (Jansen et al., 

2014). Therefore, disease specific indices can be helpful 

for identification of crop disease and detection and 

delineation of diseased area.  

All UAS based VIs calculated and used for different 

analysis of earth surface are tested in small area and 

results are very site-specific. Results of used methods, 

techniques and datasets can be changed according to 

biophysical environment. Therefore, UAS-VIs should be 

calculated using multiple datasets captured at different 

biophysical environmental conditions for successful 

application of the results (Sandino et al., 2018; Jiang et 

al., 2019). UAV based RGB and MSS combined 

cameras will more promising for vegetation analysis for 

planning and monitoring the forestry and agriculture 

(Wan et al., 2018). The technology is promising and 

will grow exponentially in coming years (Sankaran et 

al., 2015). 
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ABBREVIATIONS 

AGB: Above Ground Biomass; B: Blue; CI: 

Chlorophyll Index; DEM: Digital Elevation Model; DN: 

Digital Number; EGMER: Excess Green Minus 

Excess Red; ERGI: Enhanced Red-Green-Blue; G: 

Green; GCP: Ground Control Point; GCS: Ground 

Control Station; GI: Greenness index; GLI: Green Leaf 

Index; GRVI: Green Ratio Vegetation Index; G-RVI: 

Green-Red Vegetation Index; IPVI: Infrared Percentage 

Vegetation Index; MCARI: Modified Chlorophyll 

Absorption in Reflectance Index; MRENDVI: Modified 

Red Edge Normalized Difference Vegetation Index; 

MRESR: Modified Red Edge Simple Ratio; MSS: 

Multispectral Scanner System; MTVI1: Modified 

Triangular Vegetation Index-1; MTVI2: Modified 

Triangular Vegetation Index-2; NDVI: Normalized 

Difference Vegetation Index; NEGI: Normalized 

Excess Green Index; NGDVI: Normalized Green 

Difference Vegetation Index; NG-RDI: Normalized 

Green-Red Difference Index; R: Red;  RENDVI: Red 

Edge Normalized Difference Vegetation Index; RGB: 

Red Green Blue; RGBVI: Red-Green-Blue Vegetation 

Index; RNDVI: Renormalized Difference Vegetation 

Index; RPAS: Remotely-Piloted Aerial Systems; SIPI: 

Structure Insensitive Pigment Index; SR: Simple Ratio; 

SVM: Support Vector Machine; TVI: Triangular 

Vegetation Index; UAS: Unmanned Aircraft Systems; 

UAV: Unmanned Aerial Vehicle; VARI: Visible 

Atmospherically Resistant Index; VI: Vegetation Index; 

VIEG: Vegetation Index of Excess Green. 
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