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Essentially the  -method is based on the fact that if      and      are 

sequences of random variables such that either      

 
→   or      

 
→    

and      has a limiting proper and non-degenerate distribution, the same 

happens to     ; see Cramér (1946). Also if            and            are 

sequences of random pairs and      

 
→   or      

 
→   and           has 

a limiting (bivariate) proper and non-degenerate distribution, the same 

happens to          . The multivariate generalization is obvious. In many 

applications the -method leads to a linearization (use of the terms up to the 

first order of Taylor development). For details see Tiago de Oliveira (1982). 

The -method was underlying some reasoning in this Part and will be 

used more extensively in the following Parts. 

Let us give two examples, used in the text, that help to clarify the use of 

the -method. 

Example 1 

We wish to study the asymptotic behavior of   ̅    and to show that,  

   ̅        
    , as obtained by Gumbel and Carlson (1956). 
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By the Central Limit Theorem, if      have moments up to the fourth 

order, we know that 

   √  
 

 
∑      

 

 
   and       √  

 

 
∑            

 

√        
 

are asymptotically standard normal and the random pair is asymptotically 

binormal with standard margins and correlation coefficient    
  

√    
 . But 

  , as           ̅    ̅    , takes the form 

   √ 
      ̅       

√       
 . 

Then as √    ̅          
  √ 

 
→   and so 

 √ 
  ̅  

 
 √ 

      

√       
   

is also an asymptotically binomial pair with standard margins and correlation 

coefficient      √    . Also   
 
→    and, thus,  

     

        

 
→  . 

Consequently  √ 
  ̅  

 
  √  

    

√      
  is also an asymptotically 

binomial pair with standard margins, correlation coefficient   , and 

   ̅     
 

√ 
 
√      

 √ 
 

   
 

  
 .  

Example 2 

Let        be a twice-differentiable function and           a sequence of 

random pairs such that  √ 
      

  
 √ 

      

  
  is asymptotically binormal 

with standard margins and correlation coefficient   . Then: 

√                      is asymptotically normal with mean value 

zero and variance   below. 

 In fact, as 

√ {                 }  √          
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as the second order terms are     
      we see that √                     

has the same asymptotic distribution of the linearized form 

√         
   

   
      

  (     )
   

   
      

  

and is thus normal with mean value zero and variance 

    
  

   

   
      

            
   

   
      

 
   

   
      

    
  

   

   
      

  . 

The multivariate generalization is obvious. 

This result presupposes that not all the first derivatives are null; if this 

is not the case (i.e., all first derivatives are null) then we have different 

asymptotic distributions, such as the    — see Tiago de Oliveira (1982). 
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