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Abstract  

The chapter analyses the development in time of some 

physical system subject to random influences, by means of a 

discrete or continuously registering instrument. The 

behaviour of maxima in random sequences and stochastic 

processes having as a target to obtain, under convenient 

conditions, the same limiting distributions is discussed in 

this chapter. Extremes in stochastic sequences, global 

extremes of Gaussian stationary processes, global extremes 

in Wiener-Lévy processes and local extremes in Gaussian 

stationary processes are given with some results. Some 

scattered examples of extreme value properties for other 

kinds of stochastic processes are also discussed. 
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13.1 Introduction 

There are various physical applications modelled by a family of random 

variables      depending on a discrete or continuous parameter  , usually 

interpreted as time. This situation arises when we study the development in 

time of some physical system subject to random influences, by means of a 

discrete or continuously registering instrument. Our observations can take the 

form of a set of discrete ordinates or of a curve in a diagram with the time  , 
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as abscissa, and the observed value      as ordinates. This cloud of points, or 

curve, can be regarded as a realization, a version, a trajectory or a sample 

function of the basic random sequence or stochastic process     . The random 

variables      and     , for different time moments   and    will, in general, 

be correlated. We will not deal with random fields. 

We will, then, successively, consider the behaviour of maxima in 

random sequences and stochastic processes having as a target to obtain, under 

convenient conditions, the same limiting distributions. It is intuitive that some 

waning out of the dependence must be imposed. Let us clarify this by a simple 

example. Consider a sequence of i.i.d. standard normal random variables 

             and consider the (composed) sequence    √     

√                 . It is evident that the sequence     is a 

multinormal sequence with standard margins and (constant) correlation   (the 

inverse is also true). It is evident that  

 
   
 

    √      √     
 

   
 

   . As 

by the Weak Law of Large Numbers 

 
   
 

    √        
 
→   we see that 

 
 

   
 

    √     √         √      
 
→  , so that the asymptotic 

distribution of  
 

   
 

    √     √         √  is standard normal. Thus, if 

the correlation is constant         and the process is gaussian, the 

asymptotic distribution is normal and not extremal. As said, some conditions 

must be imposed on the dependence to obtain the Extremal Limit Theorem: 

essentially that, in some sense, dependence must converge adequately to zero. 

13.2 Some applications 

Consider first the following situation which may occur in some Reliability 

studies. Suppose that the output of some electronic device should, ideally, be 

a given function      of time, but the observed output will be            

    , where the deviation      may be regarded as the noise, produced by 

various internal and external disturbances. In some cases, when the 

probability structure of the noise      is known, at least in general terms, it 

may be possible to find the probability that, during a given observation period 
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                          will always stay within some limit(s), 

possibly functions of time. We may even be prepared to accept exceedances 

of some level, provided that they do not occur too often, or perhaps that the 

excursion of     outside the limit(s) will be a small fraction of the total 

observation time                     . We are, then, interested in the 

occurrence and frequency of certain extreme values of     , particularly the 

ones falling outside the limit(s). Also it may be important to find the 

probability that the maximum or minimum of      during the observation 

period will over-or underpass some value. 

An example from the statistical analysis of random loads: an airplane 

travelling through gusty winds, or a car driving along a rough road, or a ship 

in a rough sea, will be exposed to loads fluctuating in a random way. To 

estimate the service life of such structures, it may be important to study the 

extreme values of the load curve      to avoid ruptures, in particular by 

studying the frequency and the size of the peaks of the load curve. In some of 

these applications, it will be important to investigate the random length 

     and the random size             of the fluctuations,    

corresponding to a maximum of      while    denotes the following 

minimum. 

Analogous questions of the sizes of fluctuations in a random the 

construction of ships, antennas, etc., where the height and length of storm-

generated ocean waves, gusts of wind, etc., are important, and may be 

investigated by probabilistic methods. 

Analogous problems of extreme values are encountered in 

Meteorology, Hydrology and Hydrography, where      may signify the wind 

velocity or the river discharges or the sea level at some given point. Once 

more it is important, for various practical problems, to have information about 

the height and the frequency of the peaks of the      curve, and even the 

shape of the curve in the neighbourhood of the peaks. 

Finally we can mention some economic applications. If      denotes, 

for instance, a price index, or some measure of business activity at time  , 

analogous extreme value problems may often be studied. A particularly 

interesting case occurs, as will be seen below, in insurance practice, in 

particular the ruin problem. 
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The pioneer writer in this field, from the point of view of Engineering 

applications, was Rice (1944/45). Although the area is still under intensive 

study we can cite, as basic, Cramér and Leadbetter (1967). Leadbetter, 

Lindgren and Rootzén (1983), and some of the papers in Tiago de Oliveira 

(1984) and references therein. 

We will not give proofs, only sketch some of them, because we are 

going to refer to limiting results of theoretical type which, in fact, reduce to 

univariate distributions for applications. The next chapters will deal with 

actual sequences and processes of extremes. 

13.3 Extremes in stochastic sequences 

Associated with the asymptotic behaviour of maxima (minima) in random 

sequences is the problem of “high” (“low”) exceedances of increasing 

(decreasing) levels     . We will deal, once more, only with maxima, minima 

being dealt with by symmetry. 

A basic result is the following: 

For the random sequence                                 

           is such that                          →     and 

also                                  ⁄  
               

     →  then      is max-stable, and thus must be one of the  

                   . 

This condition, as said before, imposes for                   a sort 

of independence-like limiting behaviour. 

For stationary sequences the condition       for the (real) sequence    

which reads as 

                 
                  

                   
                for 

any integers                    with        where 

    →   as  →   and           , is very important. This condition is, 

evidently, also a kind of asymptotic-like independence weaker than the one 

before, owing to the stationarity added. It is equivalent to impose         →   

for each     . 

It can be shown that: 
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If        is a stationary sequence,   
 

   
 

     has a limiting distribution, 

and for all sequences                  the condition            

is valid for each   , then the limiting distribution function is of one of the 

forms                    . 

For stationary normal sequences       is valid if         →   

(Berman condition). 

Concerning stationary sequences, we can go further as regards domains 

of attraction by comparison with i.i.d. sequences with the same margins 

    . Denoting by       a sequence such that              →   and 

supposing that for some    condition           is valid and      
 

   
 

    

        converges, then for any   we have       
 

   
 

          →       

for a convenient           . 

If for any  ,       
 

   
 

          →       , is called the extremal index 

and we can compare 

 
   
 

    with 

 
   
 

  ̂  when   ̂   is an i.i.d. sequence with 

margins   . It can be shown that:  

If the stationary sequence      has extremal index  and 

     
 

   
 

  ̂          →     then      
 

   
 

            →

      which is of the same type of      . The attraction coefficients used are 

the same. 

Note that in many cases we have    ; but if we take         i.i.d. 

with     and if we define                  we have             

      and             →      (i.e., if 

 
   
 

  ̂   has limiting distribution 
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function     ) so that      
 

   
 

                          →

   ⁄              . 

For details see Leadbetter, Lindgren and Rootzen (1983). 

13.4 Global extremes of Gaussian stationary processes 

In many applications, as in those mentioned above, the random mechanism 

generating the stochastic process under observation can be assumed to have 

the dependence structure waning out, at least as long as we consider 

observation periods of reasonable length. A precise probabilistic 

characterization of this asymptotic independence property could be the 

following. Consider the random variables                           , 

where the    are any time points,   is a real number and      and         

belong to the observation time interval. If the joint distribution of any such 

group of random variables associated with the      process is independent of   

 , we say that the process is (strictly) stationary. If, moreover, all these 

distributions are multinormal, we are dealing with a normal or Gaussian 

stationary process. For this class of processes, some of the extreme value 

problems indicated above can be solved at least in part, and we shall give an 

account of some results so for obtained in this direction. 

From the stationarity it follows immediately that the mean value     , 

the variance      , and all other moments of     , when they exist, are 

independent of  . It also follows that the covariance              is a 

function of the time difference     and thus an even function, so that we 

may write 

                              

From now on we will suppose, for simplicity, that we are dealing with 

the standardized Gaussian process                , denoted simply now 

by                        being the correlation function. 

The correlation function       has the spectral representation 

     ∫                
 

 
, 



Statistical Theory of Extremes, 319-332, 2017 (Online Edition).                  J. Tiago de Oliveira  

325 

 

where      is a distribution function. In the most important applications,      

is absolutely continuous               , so that we have  

     ∫                  
 

 
.  

The function      is called the spectral density of the process. The spectral 

moments of        

   ∫            
 

 

          

are not necessarily finite. We shall here assume that    is finite for    . 

This implies that      and its four first derivatives tend to zero as    tends to 

infinity; we shall further assume that      itself tends to zero at least as 

rapidly as some negative power of  . Then for small values of    we have the 

expansion 

       
 

  
    

  
 

  
    

       . 

Recall that                being an even function, the odd moments are null. 

We can now discuss some extreme value problems for      processes under 

the conditions given above. Suppose that the observation period is      . As 

     has mean value   it can take positive and negative values (supposing 

non-degeneracy         ). 

Let then     be some level. We can seek the probability that      

exceeds   at least once in      . Or, denoting by      the (random) number 

of upcrossings of   (i.e., crossings of    upwards), we can seek its properties, 

and even its distribution. We will give the expression of the mean value of 

     and the asymptotic behaviour of     . Other results can be seen in 

Cramér and Leadbetter (1967) and in Leadbetter, Lindgren and Rootzén 

(1983). 

The mean value of     , for the level  , is given by 

         √               . 

From this expression we see that the mean number of upcrossings of the level 

  decreases quickly to zero, as   becomes large. For a negative level    , the 

same expression gives the mean number of downcrossings of the level   . 
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If we denote by      and      the number of downcrossing and of 

crossings(               , because of tangencies) we have from the 

stationarity                 
 

 
       . Every upcrossing of the level 

  corresponds to a peak higher than   for     . The formula above thus given 

the mean number of upcrossings or peaks, showing that they become scarce as 

  becomes large. Writing 

           √              

we have 

           , 

and thus the average number of peaks higher than   in a time interval of 

length     is precisely one: the return period of these high peaks is    . The 

return period of downcrossings is also     and that of the crossings is     . 

We can even give a much more specific result concerning the 

asymptotic time distribution of peaks higher than a level  . As   tends to 

infinity, it can be shown that the time distance between two consecutive peaks 

higher than   has, asymptotically, an exponential distribution with probability 

density        (the return period      being the scale parameter), and that the 

successive time intervals between such peaks are asymptotically independent. 

The occurrence of such high peaks will, asymptotically, constitute a Poisson 

process and if     is a number independent of  , the probability of exactly 

  peaks higher than    in a time interval of length     converges, as  →  , 

to the Poisson limit            . 

From this result, the limiting probability distribution for the largest 

ordinate of      in a large observation period       is easily deduced. If we 

denote  ̃                    , the largest value assumed by      for 

     , we have the following relation: 

       ̃    √      
      √      

√      
 →                 

as  →  . Note that this result is very similar to that given for independent 

normal sequences, the already classical case. 
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For the smallest value of     in      there is, of course, a 

corresponding relation. 

When   is large, any peak higher than   of      will have the following 

appearance: the upcrossing of the level   will be followed, after an average 

time asymptotic to  √        , by a downcrossing of the same level. Half-

way between an upcrossing and the next downcrossing there will be a 

maximum of the curve, and the excess of this maximum over the   level is 

small when   is large. 

Let us deal, briefly, with the length and size of the fluctuations of      . 

Suppose first that it is known that      has a local maximum at some point    . 

The probability distribution of the ordinate      , relative to this hypothesis, 

has an explicit analytic expression with a mean value equal to      √     . 

Let us now suppose that      has two consecutive minima at      and 

    , and a maximum at     , where         . The wave of      in 

        has the length      , its height (or amplitude) being defined as  

                     . The probability distributions of the length and 

height of the wave are known and their mean values are: 

                √      

               √       . 

As      we have      
 . If the spectral density      differs appreciably 

from zero for large  , the spectrum of the process contains high frequencies, 

and     will be large. The mean length and height of the waves will then be 

small, which means that      will show a large number of fluctuations of 

small duration and size. 

In the opposite extreme case, when    only exceeds   
  by a small 

amount, the spectrum will be concentrated in a small interval about some 

central frequency   , and the length of the      waves will then all be 

approximately equal to       , while the size will be variable, with a mean of 

approximately √   . 
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13.5 Global extremes in a Wiener-Lévy processes  

Let      be the Wiener-Lévy stochastic process, the first approach given to 

the theory of Brownian motion. We will seek the stochastic behaviour of the 

global maximum   ̃                . The result to be given is due to 

Lévy. We will briefly follow Papoulis (1965). 

As is well known, the Brownian motion      has       and 

                   √   where     , as before, denotes the standard 

normal distribution function and   is the dispersion parameter of the process 

(of       ). 

It can be shown that the distribution function of  ̃    is the same as that 

of       , that is, 

      ̃                     

         √                 

owing to the symmetry                       . 

We can roughly sketch the proof of this result. The basic fact is the 

reflection symmetry principle (of  D. André); if a trajectory      in any instant 

     attains the level       the probabilities of       being later, at some 

instant, in positions     or     are equal, or equivalently, that for each 

trajectory crossing the line          there is a symmetrical (reflected) 

trajectory on this line. Then 

       ̃                                   ̃       

                 

because, by André‟s principle. We have 

    {        ̃     }      {        ̃     }              ;  

it is evident that for minima the result is symmetrical to the line    . 

13.6 Local extremes in Gaussian stationary processes 

Cartwright and Longuet-Higgins (1956) have shown that if       is a twice-

differentiable Gaussian stationary process and         is the trinormal 

probability density of the random triple          , the density of   , known to 

be a maximum, is given by 
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∫     

 

  
          

∫     
  

  ∫    
 

  
          

 . 

The reasoning, based on Rice (1944/45), is roughly as follows:              

be an (infinitesimal) time interval. If there is a maximum in           we 

must have          in that interval and          . As the trajectories        

are almost linear, we have approximately                    in the interval 

and, consequently, the straight line close to      , passing by   and with the 

slope  , has a zero at       so that           . The density of  , 

relative to this strip, is then       

∫     ∫    
      

 

 

  
         

∫    
  

  ∫    
 

  
 ∫    

      

 
         

 

whose limit, as      , is given by 

∫    
 

  
          

∫     
  

  ∫    
 

  
          

 . 

This heuristic derivation — evidently not rigourous — gives a good idea of 

the behaviour of        on a local scale. A correct — and longer! — proof can 

be given. 

For a Gaussian stationary process, with zero means, the covariance 

matrix of            is, as is well known, 

[

        

      

          

] 

where the   , as before, denote the jth moments of the spectral density of the 

standardized process       . For the standard process        , as the density 

         is the trinormal one with zero means and the covariance matrix 

given, the density of        is  

     
 

√  
        ⁄    

         ⁄         ⁄  ∫      ⁄
         ⁄  ⁄

  

      

where        
      (    by Schwartz inequality) and      evidently has 

the density  
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             . 

The distribution of the observed maximum then depends on only two 

parameters: a dispersion parameter   and a quantity           which can 

be interpreted as the relative spectrum width. For     we have the Rayleigh 

(minima) density 

           if          

        ⁄   if         

and for     we obtain the normal density 

     
 

√  
      ⁄ ; 

  is thus a measure of non-normality. 

For the reduced minimum  ̰ ― which is easily obtained by reflection 

on     ― we have 

     
 

√  
        ⁄    

         ⁄         ⁄ ∫      ⁄
          ⁄  ⁄

  

      

13.7 Some further results 

As our main interest has been directed towards Gaussian processes, we will 

only give some scattered examples of extreme value properties for other kinds 

of stochastic processes. 

Consider the class of processes       with independent increments such 

that       ; for     the characteristic function of       is 

                  
 

 
        ∫                       

  

  
, 

where   is a constant and      is bounded and non-decreasing. If      is 

identically zero, we have the Wiener-Lévy, or Brownian motion, process dealt 

with previously. On the other hand, if     and   is constant except for a 

jump of magnitude   at    , we have a centered Poisson process. For the 

general class of processes with independent increments, with the characteristic 

function given above, the same formula for  ̃    holds asymptotically for 

large  , with    replaced by    ∫     

  
      . In particular this result 

applies to the Poisson process. 
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Consider now a process with independent increments and a slightly 

modified form of the characteristic function: 

                    ∫                            
 

 

 

where     is a constant, while      is a distribution function with a mean 

value  . This process occurs in Insurance Risk Theory, where   is the 

distribution function of the amount of a claim, while   represents the 

“loading” of the risk premium.       is here the total amount of loaded risk 

premiums paid during the time interval      , minus the total amount of 

claims that have occurred during the same period. If we assume that        

is the initial capital of the risk business, and consider this business to be 

ruined if      ever takes a value   , the ruin probability     is the 

probability that the minimum value of       for some positive   will be   . A 

fundamental result of Risk Theory asserts that 

         , 

where   is the smallest positive root of the equation 

∫           
 

 
          . 

As a final example consider the integral of a stationary process. We 

write for      

      ∫         
 

 
 , 

where      is a gaussian stationary process satisfying the conditions above. 

Moreover, we assume here that the spectral density      is continuous and 

positive at the point    . We then have            and          

                         →  . 

For the normalized process   ̅          √         it can then be 

shown that we have, with    ̃              ̅   , 

     √                  ̃    √                 →   

for any    , as  →  . 
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For other details see the papers by Berman (1962), (1964), (1964b), 

(1974) and (1982) and Pickands (1967a), (1967b), (1968), (1969a) and 

(1969b) as well as the references given in the first section. 
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