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Abstract  

Properties of the extreme-Markovian-stationary 

(EMS) sequences analogous are introduced in this 

chapter. Statistical decision for EMS sequences and 

processes and Extreme-Markovian-evolutionary 

(EME) sequences with some remarks on statistical 

decision are given. Sliding extreme (SE) sequences 

and statistical decision for SE sequences are also 

given with applications for earthquake analysis and 

modelling. 
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15.1 Extreme-Markovian-stationary (EMS) sequences 

Let us introduce the extreme-Markovian-stationary (EMS) sequences 

analogous to normal-Markovian-stationary ones and study some of their 

properties. In this section and in the following one will follow Tiago de 

Oliveira (1972). 

Let *            + be a sequence of independent reduced Gumbel 

random variables and consider the sequence 
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      (           )    . 

We see immediately that all    have distribution function  ( )  iff we 

have        . Putting     (     )we get the EMS sequence 

defined as 

      

      (                (   ))    (     ). 

The distribution function of the pair (       ) (   ) is      *   

        +      *                         (   )+   

 (   (        ))  (      (   ))   (     )      * (       )  

   (         )+ where the dependence function is  (   )    

   (    ) (    ). 

The transition distribution function     *           + is given as 

 (     )      *    (             (   )+   )                

and  (     )     * (   )   +            , that is  (     )  

 (        )     *(   )   +   being the Heaviside jump function. 

The transition density, using the Dirac   pseudo-function, is 

,(   )     (        )   (        )-    * (   )   +. 

The distribution function of (       ) is given by the iterative formula 

  (         )      *             +      *             

                           (   )+  

    (             (             )  )  (       (   )). 

The distribution function of (     ) (   ) is given by  

    (     )      *         + 

       (           )  (     (   ))         , 

  (   (         ))   (     (   ))   (     )         . 

The iteration shows that the distribution function of (     ) is 

 (        ) , so that the correlation coefficient between   and   is 

 

  
 (    ). 



Statistical Theory of Extremes, 354-379, 2017 (Online Edition).                 J. Tiago de Oliveira  

356 

 

The expression of     in   (   ) is 

       ,   (   )      

 
   
   

(   (   )     )     (   )-. Thus: 

The EMS sequence    is stationary with the distribution function given 

by the iteration 

 (   )   ( )   (         )   

    (             (            )  )  (      (   )). 

Its mean value is  , the variance    ⁄  and the correlation coefficient 

   ⁄   ( ) ; the correlation coefficient between   and 

  (   )    
 

  
 (    ). 

The distribution function of    (        ) being 

    *   (       )   +      * (   (   )) 
  +, 

we see that 

    (         )

    (   (   ))

 
→      →  . 

Also 
    (        )

     

 
→ and the mean value and variance of 

    (       ) are      (   (   )) and     ⁄ . 

Let us now obtain some results which may be useful for the description 

and analysis of an EMS sequence. 

Let us first show that: 

The ergodic theorem in mean-square for the EMS sequence is valid. 

As  (
 

 
∑   
 
 )    we have only to show that   (

 

 
∑   
 
 ) →  . But 

 (
 

 
∑   
 
 )  

    

  
∑    
 
    

   ⁄

  
(   ∑ (   )   

 
 )  

where the correlation coefficient   is          
 ⁄   (       ) by the 

stationarity. As    
 

  
 (  ) we have 

 

 
∑ (  

 

 
)  (  ) →   

 , 
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which shows the desired result. 

The results that follow suggest the trend of the next section concerning 

statistical decision. 

As the EMS sequence is stationary the correlogram technique can be 

applied; from      we can expect the empirical correlogram to tend quickly 

to zero. 

By contrast, the periodogram technique is not useful as could be 

expected. Let   be the trial period. The quantities   ( )  
 

 
 ∑   
 
    

     

 
 

and   ( )  
 

 
∑   
 
    

     

 
 converge in mean square to zero, as their mean 

values converge to zero and  (  ( ))  and  (  ( ))  converge to zero. A 

simple way is to show that 

 (  ( ))   (  ( ))  
   ⁄

  
∑           

  (   )

 
     

   ⁄

  
(   )∑   (   )

 
    

     

 
→  , 

which is evident because      
 ⁄  (  ) →   (as follows from the ergodic 

theorem). 

We can also consider the associated sequence of ups and downs. 

Denoting by    the number of times that          for (           ) we 

have 

   ∑  (       )
 
 . 

As       (                (   ))  we have  (   

    )   (      (   )      ) . Thus  (
  

   
)  

   

   
 and  (

  

   
)  

 

(   ) 
,(   )    ∑ (  

 

   
)  
  

 - with     ( (       ))  
   

(   ) 
 

and   
   

(   )     

  (   )(      )
 as  

 ( (     )  (         ))      (                )  (
   

   
)   

  
(   )      

(   ) (  (   )(      ))
.  

As   
 →   when   →   we see that 

  

   

  
→ 

   

   
. 
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We can generalize, by defining another type of stochastic sequences of 

extremes analogous to linear processes in gaussian processes theory. 

Let *          +  be a sequence of independent reduced 

Gumbel random variables and define 

            (       ).  

Then     *    +      *         +  
 
 
 
  (    )  

    *    ∑    
  + has Gumbel reduced margins iff ∑    

    . 

Taking then any set of probabilities     (∑   
 
   ), we must have 

           (          ),  

the EMS sequence being obtained by taking     (   ) 
 . 

For a sequence *         + of independent reduced Gumbel 

random variables we can also define an extreme sequence by choosing 

  ( )    such that ∑   ( )
 
    and putting 

           (        ( )). 

15.2 Statistical decision for EMS sequences 

Let us return to EMS sequences with reduced margins. From the relation 

            (   ) we get the maximum likelihood estimator 

 ̂      (        (       )). 

We can easily obtain the distribution of  ̂  and show that     * ̂  

 + →  . Note that  ̂   , but we can have  ̂   , thus suggesting truncation 

if this is the case. 

Then      * ̂   +    for    . Let us then obtain     * ̂   + 

for    , if     by computing   ( )      * ̂   + for    . 

As               (     ) we see that 

  ( )      *             +   

    *         
 

   
                             +   



Statistical Theory of Extremes, 354-379, 2017 (Online Edition).                 J. Tiago de Oliveira  

359 

 

     *       ( )                      +, 

with     
   standard exponential and   ( )  (   )

  , which, iteratively, 

gives 

  ( )  (
 
 
 
   ( ))

            ( )          ( ), 

so that, as   ( )  (   )
  , we have   ( )  

  

 (   )
 
      

   
   ( )  

(   )  , 

  ( )  (   )
    

and thus     ( ̂   )    (   )
   →          and      ( ̂   )  

        . This estimator has for     

      ( ̂     )

   
  (   )               

     if          ; 

asymptotically  ̂  is better than the common maximum likelihood estimators 

whose order is, usually,     . 

In the more general case, we have an EMS sequence           

with general margins, where   and  (  )are the location and dispersion 

parameters. We will show, using the results given in the paper, how to obtain 

quick estimators for  ,   and  . 

We have  ̅       ̅ 
 
→       by the ergodic results,  

   
  
   

 
 
→ 
   

   
 

by the ups and downs sequence, 

      (       )       (       )
 
→     ,  

and also 

   (       )

    
 
      (       )

    

 
→ . 

As, for      , we have    
   

   
 
 

 
 , decreasing with  , we will take 



Statistical Theory of Extremes, 354-379, 2017 (Online Edition).                 J. Tiago de Oliveira  

360 

 

  
      if           

  
       if       (  ),  

and use 

  
  

    
 

    
   or   

    
  
 

    
 .  

Note that     (  
   ) gives   

   (diagonal case) and    

   (  
     ) gives    

    (independence case). 

Once   
  is known we must estimate   and  . A natural choice is the 

ergodic theorem thus giving one equation 

 ̅    
      

 . 

For a second equation, we could use either 

   (       )    
        

  

(as      (       )        (       )
 
→      ) 

or 

   (       )    
        (  

   (    
 ))  

 . 

As the use of the first relation, for   
 , imposes one more condition (i.e., 

   (       )    ), we will use the second relation, with the ergodic 

theorem, to estimate   
   and   

 . 

Thus we have the system 

  
    

  
 

    
   

  
  

 
   
 
 (  )  ̅ 

   (  
   (    

 ))
. 

and      ̅      
  

to estimate the parameters. Note that the denominator of   
  is always    for 

    and that ,   (  
   (    

 ))-      
 
→ . 
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If we substitute the denominator of   
  by      we thus have the 

estimator   
   (

 
   
 
(  )   ̅ )       (independent of    

  ) and also the new 

estimator    
    ̅      

  . We will use these estimators. 

As an example we will apply these simple estimators to two random 

sequences *  + and *  + of 25 terms where *  + is a sequence of independent 

reduced Gumbel random variables obtained from Goldstein (1963), and *  + is 

an EMS sequence with      , i.e., 

      (       )      : 

Table 15.1 

j 1 2 3 4 5 6 7 

   1.412 -0.296 -0.031 1.388 1.657 -0.382 -0.175 

   1.412 0.719 0.026 0.695 0.964 0.271 -0.422 

        

j 8 9 10 11 12 13 14 

   -0.380 -0.692 2.135 0.130 0.040 1.927 1.456 

   -1.073 -1.385 1.442 0.749 0.056 1.234 0.763 

        

j 15 16 17 18 19 20 21 

   0.472 1.140 -0.930 -0.793 -0.913 -0.610 0.616 

   0.070 0.447 -0.246 -0.939 -1.606 -1.303 -0.077 

        

j 22 23 24 25    

   -0.920 1.434 1.586 3.688    

   -0.770 0.741 0.893 2.995    

 

Note that in the two cases we have        . Assuming this, for the 

*  +  sequence we have       so          (    ) and so    
    

(independence); for the *  +sequence we have        and so          , 

   
      and    

           which is a long way from         
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In the general case we can add the estimators of   and  . 

For the *  + sequence we have 
  
   
 
 (  )         ̅          and so  

   
            

        , 

which are not very far from the exact values. Clearly, assuming    , we 

should have used habitual ML estimators. 

Consider, now, the *  +  sequence. We have estimated, before,   by 

   
          . 

As we have 
  
   
 
 (  )        and  ̅        we get    

        and 

   
        . 

Once more the estimates are not close to the exact values! 

The estimation problem has to be reconsidered. 

15.3 Extreme-Markovian stationary (EMS) processes 

After the definition of extremal processes and EMS sequences, we will define 

the EMS processes and relate them to the extremal processes, consider the 

associated maximum process, and show that its asymptotic behaviour is 

similar to that of an extremal process. This is analogous to the relation 

between the Wiener-Levy process and the integrated Orstein-Uhlenbeck 

process, as could be expected, to a certain extent, from the “duality” between 

maxima and sums. 

In this section we will follow Tiago de Oliveira (1973). 

An extreme-Markovian-stationary (EMS) process  ( ) can be 

characterized by means of the following axioms: 

•  ( ) is a stationary process defined for  (       ); 
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• for      ( )      ( ( )   (   )  (   )   (   ))  ( ) and  

 (   ) being independent
1
; 

• the random variables  (   ) have a reduced Gumbel distribution;  

•  (   ) and  (     ) are independent if  -     , -       ,  ; 

•  ( ) is a reduced Gumbel random variable. 

We will now deduce some basic results from the axioms. 

From the stationarity we get 

    ( ( )   )      ( ( )   )   ( ). 

Now using the second axiom we get 

 ( )      ( ( )   )   (   (   ))  (   (   )) so that 

  (   )    (   )   . 

Now taking       we get 

 ( )     ( ( )   (   )  (   )   (   )) 

     ( ( )   (   )   (   )  (   )   (   )   (   )  (   )

  (   )) 

so that 

 (   )   (   )   (   )  

 (   )   (   )     ( (   )   (   )   (   )  (   )   (   )).  

As   (   )    the first relation gives, as   ( )   , 

 ( )      (   )  

so that 

 ( )     (       ) 

and, consequently, we get for      ( )     ( ( )   (   )  (   )  

   (     (   ))). 

                                                           
1. We could instead of this formulation introduce the random variables   (    )  
 (    )    (   ) with a Gumbel distribution (not reduced), adopting conveniently 

the axious and the proofs. This is left as an exercise. 
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Note that the random variables  (   ) satisfy the relation 

 (   )     ( (   )     
         

         
  (   )     

       

       
)  

for        . It is immediate that 

 ( )    ( 
   )     ,  

where    (  ) is a (reduced) extremal process. 

The joint distribution function of ( (  )    (  )) is easily shown to be 

  (             )      * ( )        (  )    + 

     (                     (         (       ))     ). 

  (       (   
  (       ))). 

From the previous result we get 

  (           )     ( ( 
        )     (        (     )     )) 

so that the dependence function is 

 ( )       (   (     )   ) (    ), 

a biextremal one with the parameter      (     ). 

The correlation coefficient is then 

 

  
 (   (     )), 

now being continuous in the diagonal. 

Also the conditional distribution function of the EMS process is 

    ( ( )     ( )   )     if      (   ) 

  (      (     (   ))) if      (   ), 

with a jump of 

 (     (  (   )   ))    at       (   ), 

for    . 
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Because  ( ) is a Markovian process, the least squares predictor of  ( ) 

when  (  )        (  )    (             ) is the conditional 

mean value of   ( ) when   (  )    , 

 (       )      (    )  ∫ ,   (     (  (    )   ))-   
  

  
  

and the conditional mean-square error is, after a simple algebra, 

∫ ,   (     (  (    )   ))-     ,( (       )  
  

  
 (    ))

    
 -.  

Recall that also for the EMS process, from the stationarity, we have the 

mean value   and the variance     . 

Let us now study  ̃( )           ( )  (     ). The definition has 

effective meaning because of the relationship between  ( ) and   ( ). The 

correlation coefficient being continuous on the diagonal, Theorem C in Loéve 

(1961), shows that  ( ) has many separability sets, one of them being the set 

of non-negative rationals. 

We can then compute     * ̃( )   +. Fixing    , for 

  ( )      *
 
 
 
 * (   )    ++  

we have 

  ( )      *
   
 
 
* (   )   +  (   ( (   ) )       ((  

 )      )     (     ))   ++ 

     ( )      * (   
    )   + 

   ( )     (  (   
    )   )      * (   (       ))   +. 

Taking now *  + rational and such that     →  ,  we get 

    * ̃( )   +     ( (     )   ), 

so that  ̃( )      (     ) is a reduced Gumbel random variable. 

Analogously we can show, for    , that we have 

    * ̃( )   ̃( )   +      * (     )    (       )   (   )   +. 
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The  ̃( ) process is evolutionary. Using the reduced margins     

   (     )        (     ) we get the dependence function 

 ( )        (    ) (    )  with    
     

     
. 

For large values of   and   we have       which suggests that  ( )  is 

asymptotically similar to the external process. 

Note that the mean value function is  ̅( )       (     ) , the 

variance is constant (    ) and the correlation coefficient is 
 

  
 (
       

     
)  for 

   . 

For the times       (      ) we get 

    * (  )                 +  
 
 
   

  (   (       )  (       ))  

so that, for the new timing,  ̃( )   ̃((    )  ) is exactly an external 

process, and for large    and     (change of the time unit) we have       so 

that  ̃( ) is asymptotically an extremal process. 

We see immediately that   ( )    (     )
  
→  as  →  . 

For small values of     (     ) we have 
       

       
  and  ̃( )  

   (     )   ̃( )      is approximately a reduced Gumbel random 

variable; the process is stationary only to the first order. 

The relationship between  ( ) and  ̃( ) has a complex joint behaviour 

of  ( ) and  ̃( ), as the bivariate distribution is, unexpectedly, not biextremal. 

By the technique previously used, we can show that 

 (     )      ( ( )     ̃( )   )      *    (           )  

 ∫     (         
   

 
)   +, 

the margins being    (    ) and    ( (     )    ). We have  (     )  

 (   (   )    ) from the definition. Then the dependence function, for the 

reduced margins, is 

 ( )  
 

     
*   (     

   

     
 ∫ )

   

 
   (    

   

     
)    + , 
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clearly not a biextremal one as shown in the more detailed form for  ( ) 

 ( )  
 

    
  if       (     )  

   
       (     )

(     )(    )
  if     (     )           (     )  

 
  

    
    if          (     );  

but it should be noted that this  ( ) is a generalized form of the biextremal 

dependence function, the natural one. 

It is also easy to compute 

 (   )      * ̃( )   ( )   +. 

Evidently we must have  (   )    for     and for     we have 

 (   )   ( ). 

The general expression for     is 

 (   )  
      (     ) ∫     (   )

   

 
   

   (        ) ∫    (       )
   

 
   

. 

This result shows, as  (   )    for      , that, with probability 

one, 

 ̃( )   ( )     . 

We can show this result directly, as follows. 

From the basic equation we get  ( )   ( )   (   ) with    , and 

as  ̃( )   (  ) we have 

 ( )   (  )   (    ) 

and thus 

 ̃( )   ( )   (    )   ( )     . 

The correlation coefficient between  ( ) and  ̃( ), as follows from the 

natural model, is 

 ( )        ,
       (     ) 

 
 ∫    (        )   

   

 
-         
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The statistical decision for an EMS process has not yet been considered. 

Only a few suggestions will be made here. 

Two ways can be used to approach the estimation of the parameters of 

the general stochastic process  ( )       ( ) , with  ( ) a reduced EMS 

process. 

One way is to consider the sequence     (   (   )  ) observing 

 ( ) at equal time steps and considering it as an EMS sequence. In that case 

we have for the parameters   of the EMS sequence and   of the EMS process 

the relation       , and then we estimate   (or   ),  , and  as in the 

previous section. 

Another way is to recall that if  ( ) is an EMS process then  (
     

 
)  

      is an extremal process for     and thus, once   is estimated, we can 

estimate   and   for extremal processes, as before. 

15.4 Extreme-Markovian-evolutionary (EME) sequences 

 Let *  +(           ) be a sequence of i.i.d. random variables with standard 

Gumbel margins, and            a Gumbel random variable with 

parameters (     ) , i.e.,   is a standard Gumbel random variable;   is 

independent of all *  +. 

In this section and the next we will follow Tiago de Oliveira (1986). Let 

us consider the auto-regressive sequence 

    
     (               )           

where the   
  are assumed to be Gumbel random variables. Let (     ) be the 

parameters of   , i.e.,            with   reduced Gumbel random 

variables. The auto-regressive relation can then be written as 

                  (   (        )        )            

Thus      *      + is  ( ) if 

          

        

       (       )        (       )      
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so that              and           (    )          , and the auto-

regressive relation takes the simpler form 

        (               ). 

If we introduce, for convenience, the “patterned” sequence 

   (     )   (     )  with    (     )       (     )    

      (   (     )        ) .    then satisfies the auto-regressive 

equation 

         (       
 
    )           

with          
 
  (     )   , and the relation for *  + takes the form 

                
 
 . 

In brief, the EME-sequence *  + , with    with parameters (     ) , 

satisfies the relation 

        (             
 
        ) 

and the “patterned” sequence verifies 

        (       
 
    ); 

(    
 
 ) are then the essential parameters and (     ) are incidental 

parameters; we can reconstitute   by the relation           , and as 

         the margin parameters of    are (           ). 

Consider, now, the difference equation 

                
 
           : 

if      (    ) we have          
 
    (      (   

     )   ); 

if       (    ) we obtain 

    
  
 
 

     
 (  

  
 
 

     
)        (   )     (  ) 

with    
  
 
 

     
 ; note that      →  

       
 
   , the expression of     for  

    . 
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The condition of stationarity imposes                so that  

      
 
   ; this is the condition for stationarity obtained previously in 

EMS sequences;       was there a dependence (essential) parameter. 

As we have only fragmented results we will study some detailed 

features of the EME sequence. 

Let us consider the monotonicity behaviour of the “patterned” sequence. 

As  (  )   (     )      ; we see that    ( and thus    ) are increasing, 

constant or decreasing in mean according to                           , 

i.e., according to       
 
          

 
    (stationarity) or       

 
  

 . 

If      we do not have the decreasing behaviour and we get 

constancy only if      and                    . 

Now compute     *       + . If     it is immediate that      

      so that     *       +   : the EME sequence is increasing with 

probability one, and so the method of “ups and downs” considered before for 

EMS sequences for the estimation of      , which should be   , cannot be 

used. 

For      as        we have     *       +    (   
 
   ) 

decreasing with   and as     *       +        *       + →   we see 

that the sequence stabilizes asymptotically. 

When      we have     *       +        *       +  (  

   )   
 
  ,(     )  

 
  (        

 
 )   

 
  -  with value   

 
  (  

  
 
 )       , converging to (     ) (     )     →  increases if 

      
 
   , behaving in a stable way if       

 
    (constancy), and 

decreasing if        
 
   . 

The “patterned” sequence *  +  and also *  + increase in median 

    *       +      always if     , when       
 
         and 

     , but never when      , and when       (      
 
   )     

   
 
            

 
    but never if       

 
   . 
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We will obtain the bivariate structure of an EME sequence, the 

multivariate structure being an immediate extension. 

Taking     we have 

       (         
 
      )     (             

 
        

 
      )     

     ((   )       
 
  

   
   
   

((   )       )).  

Then     *         +   (   (    (   )     )) 

 
    
 

   
 (      (   )  )        

and 

    *         +     *     ( 
      )       (   ) 

   + 

if     . 

The dependence function associated with the bivariate structure of 

(     )  (           ) is 

    *         +      *               +  ( ( )  ( ))
    (   ),  

where 

    ( )    
   ( 

(   )           )

    
. 

The correlation coefficient is, then, 

     
 

  
 ( (   )        ). 

where    (   )          . For      we get      
 

  
 (
     

 
  

     
 
  
) and for 

     

We have  

     
 

  
 
          

 
  

          
 
  
 , 
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where the argument of  ( ) is between 0 and 1. For any EMS sequence, with 

      
 
    we get      

 

  
 (   (   )) evidently with      as obtained 

previously, with           
 
     (   )      : independence 

(   ) gives       . 

Let us obtain some more propositions that can be useful for the 

statistical analysis of the EME sequences. 

A first result is that     
  
→     (    ) and        

  
→   , if     , 

as  →  . From           we obtain 

 (   ⁄ )  (    )  →    (    )   (   ⁄ )  ( 
   )   →   and  

 (       )         →               (       )   
   (        ) →  .  

As           (    
 
          )  with probability 

       
  

  
 
       

  
→      (    )     →    and 

           with the complementary probability, it seems natural to study 

the statistic    
 
   
 
(       ). 

Let   (       ) denote     *                      

     +  for      . It is immediate that the event    *         

                  +, as     
 
    , is equivalent to     * 

 
  

                                       +, and we get 

  (       )    ( 
       

 
                 )  

where 

  (       )   ∫        
 

         

  (          )                  

which satisfies the relation 

  (       )  
 

      
    ((    )          ). 

Then 
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  (     )  
 

         
 
 
     ((   

      
 
 )             )  

tends to   as  →  .    is thus an estimator of   . 

Some other results give hints for statistical estimation. It is easily shown 

that, as 

 (          )
  
→     (    )  ∑  (          )            

   
   

→    (  
   

       
)        and ∑  (       ) →  

 
     (   

  )   
 if 

    , as  →  . 

We have also, for     ,     *   (          )   + 

     *    (    
 
        

 
      )   +   ( )  

   (     ) 

    *    (  (   )  
 
 )+ 

and so     *   (          )        +   (   
 
 ). 

15.5 Some remarks on statistical decision for EME sequences  

We have not obtained sufficient results even for simple and quick statistical 

decision but some remarks can be made.  

It is natural, in this initial phase, to divide statistical decision for the 

EME sequences into two steps: statistical decision concerning the (essential) 

parameters (    
 
 ) and then, supposing (    

 
 )  is known, to estimate 

(     ) by the least squares method. In principle, the estimators of (    
 
 ) 

must be independent of (     ) and those of the incidental parameters must 

be quasi-linear, i.e., such that   
 (      )        

 (  )      
 (  

    )      
 (  )                  , as happens with the least 

squares method; see Cramér (1946) and Silvey (1975). 

Let us now suppose we are dealing with the “patterned” sequence *  +.  

A test of constancy (      
 
    ) is not necessary; to devise tests 

of independence (       
 
   ) and of stationarity is very important. We 

will consider only the important case where     . 

As      
  
→   (  ), a natural region for deciding      is to accept 

this hypothesis if *     +, which is also the Neyman-Pearson test of      
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against     for the distribution  (   ) . Recall that      →    (  

  
 
 

     
)                →  

 
  if     , and   →  

 
     (  

   )             →      increases linearly with   if     , logarithmically 

if     , and converges to a constant if     . 

   can be defined by imposing     *          +        (   

   (    
 
  ))    and so       (   

    )     (     ) still depending 

on the fixation of the value    . 

A last remark: when     , as             we have           , 

so that after some steps (depending on the random    and on (    
 
 ) ) we 

will practically always have            because     (          

    )  
  
 
 

  
 
      

→   very quickly. In practice    , can be estimated only by 

the first values of *  +, if possible. The difficulty is analogous to the no-jump 

situation (non-increasingness) in extremal sequences/processes. 

Statistical decision for EME-sequences is still open; the results given 

here may be helpful in some cases for a first step. 

Evidently if we have, or suppose, or assume, that the above processes 

have margins that are not Gumbel but Fréchet or Weibull, by the usual 

transformations, estimating the convenient parameters, we can reduce them to 

Gumbel margins. 

15.6 Sliding extreme (SE) sequences 

Consider a (doubly) infinite sequence of independent random variables 

                    which are assumed to have Gumbel distribution. 

We will suppose that if the sequence is stable the    have the 

parameters (   ), i.e., 

    *    +   ((   )  ), 

but if the sequence is unstable the parameters are (  (     )   ) (   and 

    unknown), i.e., the distribution function of the    is 

 (((   )  (     ) )  ). 

We will obtain a test of     vs.   , i.e. stability vs. (positive) instability. 
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Here and in the next section will follow Tiago de Oliveira (1987). 

Evidently, if the distributions of the observations are Weibull or 

Fréchet, the usual log-transformations will reduce them to the present case, as 

is well known and will be done later. 

Thus we can write 

     (     )       

where *  + are independent reduced Gumbel random variables with     and 

    in the stable case and     in the (positive) unstable case (linear  

increase of the location parameter). 

The underlying idea is that, although we assume independence either in 

the stable or the unstable cases, independence will act as a reference pattern 

for significance tests. 

The nuisance parameter     can be interpreted as meaning that 

instability began somewhere in the past (    ), before sampling, or even can 

absorb a wrong choice of  . 

It is easy to show that if   is the correlation coefficient between 

(       ) and (       )   
 
→  if     and   

 
→  if    . 

Note that if we take    ̅      , where   has the Gumbel distribution 

with parameters (   ), then   has the Weibull distribution  

    *   +      * (
 ̅    

   
 )   +    for    ̅ 

     for     ̅ 

with the location parameter (right-end point)  ̅ , the dispersion parameter 

      ‒ decreasing to zero if  →    and thus increasing the probability 

    *   +        *   + , which is relevant to earthquakes - and 

shape parameter      ; if we take       , with   also a Gumbel 

random variable with parameters (   ), then 

    *   +     if      

     * (
   

   
)   ⁄ + if      
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a Fréchet distribution with location parameter (left-end point)  , dispersion 

parameter      - increasing with  →   and thus seeming irrelevant for 

applications - and shape parameter      . 

For earthquake applications Yegulalp and Kuo (1974) have shown that 

the Weibull distribution gives a good fit, but accepting the Gumbel 

distribution in some seismic areas; for the area considered in the case study 

Ramachandran (1980) says that the Gumbel distributions gives a good fit; for 

some remarks on global modelling for seismic areas see Tiago de Oliveira 

(1984). 

15.7 Statistical decision for SE sequences 

The likelihood of the sample (       ) is 

   (       )  
 

  
    * ∑ (

    

 
 
        )+  

    * ∑   ((    )        ) 
 +, 

and so the LMP test of     vs.     (   assumed to be zero) is given by the 

rejection region 

     

   
          

or 

   ∑       ( 
    

 
)    . 

In the tested stability (       ) , the    ( 
    

 
)    being 

standard exponential random variables, the distribution of    is that of ∑      , 

with the *  + independent. 

It is obvious that if 

  ( )      * ∑         +  

we have 

  ( )      ( )      ( )     
    

with 

  ( )      ( )   
    ∫     

 

 
      ( ), 
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and so, for instance, 

  ( )     
         ⁄ . 

Denoting by   ( ) the solution of   ( )     , we see that 

  ( )      ( ). 

We have 

  ( )          ( )        (  √   ) 

which for      , as 

  (   )              (   )           , 

gives an idea of the initial rate of increase of   (   ). 

If      and     (instability before the sample) the correct statistic 

would be    
   (with    as before), the correct region would be    

      

smaller than      , thus giving over-rejection of stability. 

   has the mean value  (   )  , variance  (   ) (     )  , and 

we can show easily that 

    
    (   )  

√ (   ) (     )  
  

is asymptotically standard normal; but this result is not very useful because we 

will deal with small values of   in applications. 

The test assumes (   ) known (stable case); we can presume it in some 

cases, such as earthquakes, because for each seismic region the long history 

gives sufficiently good estimates of the parameters to be used. 

If we were dealing with the Weibull distribution, with location 

dispersion  ̅, dispersion parameter  , and shape parameter  , the statistic    

takes the form 

   ∑    (
 ̅   

 
) ; 

when dealing with the Fréchet distribution with location parameter  , 

dispersion parameter  , and shape parameter  , the statistic    is 

   ∑    (
    

 
)  . 
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The distribution of    in all three cases is the same, in the stable case. 

Let us now consider a case study, the waning down of the Santa Barbara 

earthquake of 13
th
 August 1978. 

The daily maximum magnitudes for 13
th
 August and the following days 

until 27
th
 August, with no observation at the 27

th
, are 

Table 15.2 

Day 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Mag. 5.1 3.1 2.4 2.7 2.6 2.3 2.3 3.1 2.6 2.1 2.3 2.4 2.1 2.7 -- 

as given in Corbett and Johnson (1982). 

Taking the last six daily maxima of the paper, which goes to 30
th
 

September (2.0, 3.5, 1.9, 2.0, 2.0, 1.8), the Leiblein-Zellen estimators - see 

Chapter 5 for details - are          and         , and the estimates given 

by Ramachandran (1980) for the area (case c ) are           and     

            . For simplicity we will take  ̃      and  ̃    . Using the 

first six observed daily maxima after the earthquake, in reverse order to take 

account of the expected downward trend, we get 

   ∑       ( 
    

  
)              (    ); 

we must conclude that a downward trend exists. The closeness of the values of 

(     ) and (       ) can be interpreted as meaning that after, approximately, 

two weeks the usual stability was practically attained. 
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