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Abstract  

This analysis determined the best individual band and combinations of various 

numbers of bands for land use land cover mapping for three sites in Peru. The data 

included Landsat Thematic Mapper (TM) optical data, PALSAR L-band dual-

polarized radar, and derived radar texture images. Spectral signatures were first 

obtained for each site class and separability between classes determined using 

divergence measures. Results show that the best single band for analysis was a TM 

band, which was different for each site. For two of the three sites, the second best 

band was a radar texture image from a large window size. For all sites the best three 

bands included two TM bands and a radar texture image. The original PALSAR 

bands were of limited value. Finally upon further analysis it was determined that no 

more than six bands were needed for viable classification at each study site. 
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1 INTRODUCTION 
 

The growth and advancement of remote sensing sensors, 

platforms, and related technologies (e.g. Geographic 

Information Systems and Global Positioning Systems) 

have revolutionized the way in which geospatial data 

about the Earth’s surface has been collected (Toth and 

Jóźków, 2016). Such data provides a critical basis for 

many applications, which use this data to make 

important decisions that impact the health and well-

being of society. The mapping of land use and land 

cover (LULC) is one such important application. These 

changes can range from small localized events (e.g. the 

building of a new residential neighborhood) to that of 

changes that have much more profound impact (e.g. 

large-scale deforestation). Quite often they are in 

response to the need to meet the demands of the growing 

global population (e.g. the provision of food, water, and 

shelter), which is currently estimated to be 7.6 billion 

and is expected to increase to 9.7 billion by 2050 

(United Nations, 2019). Meeting the needs of this 

growing population is no easy feat, and will continue to 

rely on up-to-date LULC information derived from 

remote sensing systems to support sustainable planning 

initiatives (Nath, 2018). 

Traditionally, LULC was extracted primarily from 

optical sensors, such as those on board the Landsat 

space borne missions. These sensors, however, have 

several drawbacks for collecting LULC information 

including their inability to penetrate atmospheric 

disturbances, and they are fully dependent on the Sun’s 

energy to be functional (Aghababaee et al., 2013; 

Reiche et al., 2015; Mishra et al., 2017). The use of 

radar sensors overcome these challenges, providing a 

valuable tool for collecting LULC data in those regions 

of the world where those conditions persistent. Several 

studies have also examined the fusion of both optical 

and radar data for extracting LULC information, 

showing higher mapping accuracies compared to the use 

of each data type on its own (e.g. Pereira et al., 2013; 

Idol et al., 2015a, Symeonakis et al., 2018). Moreover, 

within the last decade there has been an increase in the 

number of free and accessible sources of optical and 

radar data from different platforms; this has provided 

many new opportunities for advancing LULC research.   
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The increasing amount of available remote sensing 

data has provided many new opportunities for 

overcoming data gaps in LULC mapping, especially in 

developing countries (for example, see a recent review 

of LULC mapping globally by Joshi et al., 2016). 

However, working with such large volumes of data is 

not without its own challenges. One such challenge is 

how to sieve through and select the most relevant image 

bands for mapping and monitoring LULC, and for 

specific areas. Generally, as more image bands of data 

are added, this leads to an increase in classification 

accuracy since the probability of spectral separability 

between LULC classes is also increased. However, there 

is no guarantee that all image bands will be of value in 

the classification process. Some image bands with 

similar wavelengths may also be correlated with each 

other (Sinduja et al., 2015); this can increase processing 

time, which may be substantial when using some 

machine learning algorithms to classify imagery (Catak 

and Babalan, 2013). Likewise, many algorithms used to 

extract features from imagery may become intractable 

when tasked with the processing of high dimensional 

data, thus rendering their use for real world applications 

inapplicable (Liu, 2015). To accommodate the increased 

number of image bands, the size of the training samples 

must also be increased; however such growth is 

exponential, an issue known as the Hughes phenomenon 

(Hughes, 1968). Failure to increase the size of training 

samples accordingly while increasing the number of 

image bands will typically lead to an initial continual 

increase in classification accuracy up to a peak point. 

Following this, the accuracy begins to decrease (Haack 

and Mahabir, 2017). 

Other factors can also impact the properties of the 

accuracy curve (e.g. rate of decrease, peak accuracy, and 

shape), all of which ultimately influence the selection of 

the optimum number of image bands needed for a viable 

LULC classification. Major factors include the choice of 

remote sensing classifier, the properties of the image 

bands being evaluated, and the ability of these image 

bands to discriminate between the different LULC 

classes being examined. With respect to the former, 

given the different permutations of parameters that each 

classifier can undergo, and the hundreds or even 

thousands of classifiers that exist today, a study 

examining this property is extremely ambitious. With 

respect to the latter factors, the sensitivity of the LULC 

with respect to the data being evaluated, much less work 

has explored these areas, with even fewer studies 

examining more than one location for the same or 

different LULC classes. Most work therein report on the 

resulting classification accuracies without examining its 

link to both the properties of the imagery used and that 

of the underlying LULC classes being studied. These 

two components are not mutually exclusive in that what 

makes a LULC feature more or less separable from 

other LULC classes will ultimately affect the choice of 

remote sensing data. Ultimately this affects the resulting 

classification accuracy of the LULC information being 

extracted.  

The purpose of this study is twofold. First, to 

determine the optimal number of image bands and band 

combinations required for a viable classification across 

three geographic sites. These sites were located in the 

same country and were specifically chosen to highlight 

the diversity in LULC in a developing country and the 

challenges that exist with mapping them. Another 

reason for choosing Peru as a case study was to develop 

a methodology that can be used help overcome their 

pressing need for updated LULC maps (Republic of 

Peru, 2015).  The second objective of this study was to 

compare the spectral and spatial properties of the 

selected image bands to the physical properties of the 

LULC. This information is needed to fully realize the 

potential of available remote sensing data as a source of 

LULC information that meets the specific needs of 

developing countries.  

2 STUDY AREA 

Three sites in Peru were selected for analysis in this 

study: Iquitos, Arequipa and Lima. Figure 1 shows the 

three sites and their locations with respect to Peru. The 

first study area, Iquitos, is located in the interior of Peru 

in the Amazon Basin. Iquitos has a population of 

437,630 and is the sixth largest city in Peru (World 

Population Review, 2018). It is the largest city in the 

world that is not accessible by road, only by air or boat 

(Ruiz-Calderon et al., 2016). The city grew rapidly in 

the 19
th

 century based upon the rubber industry (de 

Jong, 2012), the economy has since diversified to 

include timber, some minerals, agricultural products, 

and significant tourism (EY, 2015). The average annual 

minimum temperature is 21ºC with the coolest month 

being July. The average annual maximum temperature is 

31ºC with the warmest month being September 

(Weather and Climate, 2019). 

Figure 2 is a false color composite (bands 2, 3 and 

4 in B, G and R) Landsat Thematic Mapper (TM) image 

for Iquitos. The image was captured on 27 July 2007 

and has an approximate scene width of 14 km. The 

primary features in the Iquitos image are the silt laden 

Amazon river and tributaries to the west and the city of 

Iquitos to the south. The other features of the image 

include smooth textured and vibrant red closed canopy 

forest to the north. Mixed agriculture and secondary 

forest, in much of scene, is visible with coarser texture, 

and more mottled red and pink tones. 

Arequipa, the second study area, is the second 

largest city in Peru. The current population of this city is 

841,130 people (World Population Review, 2019). It’s 

located in the southern part of Peru and is about 100 km 

from the Pacific Ocean. Arequipa is a West Coast 

Desert with a very hot and dry climate. The average 

annual minimum temperature is 6ºC with July being the 

coolest month. The average annual maximum 

temperature is 22ºC with the warmest month being 

March (Weather and Climate, 2019). Arequipa is a very 

industrial city with most irrigated agriculture occurring 

on the periphery. 
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Figure 1. Location map of three study sites in Peru: Arequipa, Iquitos, and Lima. 

 

 

Figure 3 is a false color composite (bands 2, 3 and 

4 in B, G and R) Landsat TM image for the Arequipa 

study area. The image was captured on 12
th

 October 

2009 and has an approximate scene width of 6.5 km. 

The sub-scene is dominated to the north by the extensive 

urban features of the city in blue grey tones with 

considerable texture. The airport is located in the central 

part of this northern area. Some small rectangular parks, 

visible in red tones, are also located within the built-up 

areas. This is a common planning feature in this region 

and typically occurs in the center of residential blocks. 

Larger commercial and industrial buildings are 

noticeable by visibly coarser texture, especially to the 

southwest of the airport. To the north of airport there is 

a large area of bare soil in similar blue grey tones as 

urban but with a smooth texture. The most prominent 

landform features in the study area are the Andes 

Mountains to the north of the city. To the south, there is 

a large and highly reflective salt flat. This southern 

region also contains many irrigated agricultural fields in 

red tones. 

The third study area, Lima, is the capital of Peru 

with a very long history that predates European entry 

into the Americas. Lima is the largest city in Peru with a 

population of 9,751,717 people (World Population 

Review, 2019). The city is the largest financial and 

industrial Centre in Peru with an estimated 7,000 

factories producing textiles, clothing, and multiple food 

products (Hoge, 2014). Located on the coastal plain of 

the Pacific Ocean, Lima has a mild climate and is very 

dry as it is also a West Coast Desert (World Fact Book, 

2019). The average annual minimum temperature is 

17ºC with the coolest month being August. The average 

annual maximum temperature is 22ºC with the warmest 

month being March (Weather and Climate, 2019). 

Figure 4 is a false color composite (bands 2, 3 and 

4 in B, G and R) Landsat TM image for Lima. The 

image was taken on 5 May 2015 and has an approximate 

scene width of 23 km. The Pacific Ocean is in the 

southwest of this image. Much of the scene contains 

built up areas of residential, commercial, and industrial 

uses indicated by blue grey tones. The presence of 

vegetation is visible by red tones within the urban 

landscape. The northeast part of the sub-scene contains 

considerable mountainous terrain. 
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Figure 2. Landsat TM subset for Iquitos. 

 

Figure 3. Landsat TM subset for Arequipa. 

 

 
 

 

 

Figure 4. Landsat TM subset for Lima. 

3 DATA 

This study uses both optical and radar imagery. The 

optical imagery was collected from the Landsat 5 TM 

sensor from the United States Geological Survey Earth 

Explorer online platform (USGS, 2019). All seven 

spectral bands of this imagery were used in this study. 

The spatial resolution was 30 m for all bands except the 

thermal band which was 120 m. Radar imagery was 

collected from the PALSAR sensor on board the 

Advanced Land Observation Satellite space borne 

platform. This sensor uses L-band radar with the 

collected imagery having a spatial resolution of 12.5 m. 

Two polarizations of the PALSAR sensor, Horizontal-

Horizontal (HH) like polarization and Horizontal-

Vertical (HV) cross polarization bands were acquired 

for the three sites from the Alaska Space Facility. 

Remote sensing data are a compilation of two 

components: the spectral brightness value for each pixel 

in an image scene and the spatial arrangement of these 

pixels. While spectral brightness on its own is valuable 

for separating features that are very contrasting (e.g. 

dark features such as wet soils versus bright features 

such as clouds), for many complex environments (e.g. 

urban areas and human settlements), spectral brightness 

on its own is insufficient for separating between features 

in an image scene. Such features, however, are often 

more easily distinguished by their spatial characteristics 
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compared to their spectral characteristics alone 

(Nyoungui et al., 2002; Mahabir et al., 2018). This 

spatial information can be extracted using various 

textural measures, the most commonly used being 

derived from the gray-level co-occurrence matrix 

(GLCM) (Haralick et al., 1973). 

While texture can be extracted from any type of 

imagery, in optical imagery, the chemical, physical, and 

biological characteristics of features within the image 

are provided. This is in comparison to radar imagery, 

which is associated with the shape, structure, and 

dielectric properties of features (Pereira et al., 2013). 

This makes radar data more suitable for deriving texture 

since it better captures form and structure type 

properties of features, which can be used to help better 

distinguish between LULC features. In some cases, 

image texture extracted from radar data have yielded 

better classification results compared to the original 

radar images themselves (e.g. Kiema, 2002; Lloyd et al., 

2004; Pathak and Dikshit, 2010). Further, additional 

research has shown that combining the original radar 

and derived texture can lead to improved classification 

accuracy for different LULC features (Herold et al., 

2003; Dekker, 2003; Herold et al., 2004). As such, 

given that the aim of this study is to maximize 

separation between LULC features in remote sensing 

imagery, texture formed a major component of this 

study. Specifically, variance texture layers were 

extracted from the GLCM from each of the collected 

radar bands. Variance texture is expressed as (Haralick 

et al., 1973):  

         ∑ ∑ (   )  (   )   (1) 

where,  (   ) is the (   )   entry of normalized GLCM 

 (   ) / R,  R is the total sum of  , and   the mean of 

the moving window. Texture in this study was computed 

with an angle of 0º and distance of 1, and for three 

different window sizes of 5 x 5, 11 x 11, and 17 x 17. 

The variance texture measure and window sizes used in 

this research were specifically chosen based upon their 

success in recent LULC classification studies (Idol et 

al., 2015a, 2015b). 

Table 1 contains the list of bands in the data stacks 

and the image dates for the three study locations. The 

TM thermal band was deleted from the Lima data stack 

because as stated later on in this study, it did not prove 

useful in the other two sites, thus limiting comparison 

across sites. As will be discussed in the results, this 

deletion does not change the overall conclusions for this 

study site. In addition, for Lima, the largest texture 

window size did not function in the separability 

analysis, most likely because of the complex urban 

surface landscape and the difficulty of obtaining viable 

texture values over larger windows. Consequently, the 

variance HH and HV texture layers at the 17 x 17 

window size for Lima were also excluded from further 

analysis. 

As with other studies that examine data from 

different sensors, acquiring imagery for the same time 

for different sites can be challenging. This can be 

specifically seen with the three sites as in Table 1. With 

respect to the three study locations, this was primarily 

due to cloud cover and fog conditions in the optical 

imagery used in this research. For Iquitos, the two image 

dates are within two months and occur within the same 

year, which should not be an issue. For Arequipa, the 

same season but one year later for the LULC classes 

selected should not influence the analysis. The image 

dates for Lima are more problematic, both because of 

the differences in years and seasons. However, a close 

visual examination of the various LULC classes in the 

data used for Lima showed that the classes did not 

change significantly over that time frame. Thus the 

temporal gap in image dates is not expected to influence 

the analysis of this study. 

 

Table 1. Sensors 

Sensor Arequipa Iquitos Lima 

TM 1 Vis Blue 12 Oct 2009 27 July 2007 5 May 2015 

TM 2 Vis Green 12 Oct 2009 27 July 2007 5 May 2015 

TM 3 Vis Red 12 Oct 2009 27 July 2007 5 May 2015 

TM 4 Near Infrared 12 Oct 2009 27 July 2007 5 May 2015 

TM 5 Mid Infrared 1 12 Oct 2009 27 July 2007 5 May 2015 

TM 6 Thermal IR 12 Oct 2009 27 July 2007  

TM 7 Mid Infrared 2 12 Oct 2009 27 July 2007 5 May 2015 

PALSAR HH 16 Oct 2008 6 June 2007 20 Oct 2010 

PALSAR HV 16 Oct 2008 6 June 2007 20 Oct 2010 

HH Var Tex 5x5 16 Oct 2008 6 June 2007 20 Oct 2010 

HV Var Tex 5x5 16 Oct 2008 6 June 2007 20 Oct 2010 

HH Var Tex 11x11 16 Oct 2008 6 June 2007 20 Oct 2010 

HV Var Tex 11x11 16 Oct 2008 6 June 2007 20 Oct 2010 

HH Var Tex 17x17 16 Oct 2008 6 June 2007  

HV Var Tex 17x17 16 Oct 2008 6 June 2007  

All data are 8 bit and sampled to 12.5 m. 
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Following the collection of imagery and the 

derivation of the various texture layers, the nearest 

neighbor algorithm was used to resample all TM data to 

12.5 m (the spatial resolution of the finer radar data). 

The original TM data were in 8 bit radiometric 

resolution while the PALSAR was in 16 bit. 

As will be discussed in the next section, the 

PALSAR data were rescaled to 8 bit radiometric 

resolution and all data were co-registered and layer 

stacked. 

In order to understand the link between the 

statistical properties of the data stack and features in the 

image bands as they relate to each site, Table 2 contains 

the band statistics for the Iquitos site as an example. The 

high mean for band 4, near infrared, is understandable 

since much of the scene is heavily vegetated. Similarly, 

the higher mean for band 5, mid-infrared 1, is also 

responsive to the extensive vegetation. Given the 

tropical location, the high mean for band 6, thermal 

infrared, is expected. The means and standard deviations 

for the original PALSAR (bands 8 and 9) are the lowest, 

however, the derived texture bands among the highest. 

The variance texture bands, 10-15, which are increasing 

in window size, generally indicate a reduction in mean 

values and standard deviations with larger windows. 

This is understandable as the larger window sizes are 

basically a filtering or smoothing of the data. 

Table 3 lists the LULC classes for each of the three 

sites. For each class one area of interest (AOI) was 

selected for spectral signature extraction. The number of 

and specific classes were limited by the landscapes of 

each study site and thus vary from site to site. The 

specific classes used in this study were selected based 

on various factors, including, their ability to adequately 

reflect the LULC at the three study sites, their 

extractability from the coarse image data sources used, 

and their persistence across images dates for each site. 

Iquitos had a fewest number of identified classes. 

The city of Iquitos provided an urban site but it was not 

possible to separate this area into subclasses of 

residential and industrial based on the imagery used. 

Both classes were therefore grouped into an urban class. 

As shown in Figure 2, there are areas of relatively 

unchanged tropical rainforest to the north of Iquitos 

study area indicated by vibrant red with a smooth 

texture. The highly turbid Amazon River provided a 

water site and surrounding the city are areas of mixed 

agriculture and forest with more texture. These areas 

have secondary growth forest, pastures, and various 

crops. 

In Arequipa, the residential location was 

characterized by smaller structures and a very organized 

pattern of blocks of residences surrounding open areas. 

These appear as a red square in the color infrared TM 

image composite. The commercial and industrial AOI 

had larger buildings. Two agricultural fields which 

appeared to have different crops were also identified. 

There is a large bare soil area (light blue in the image 

scene) to the north of the airport and a highly reflective 

salt flat area in the south of the image scene in Figure 3. 

Unlike the other two locations, there are no water 

features. 

The Lima sub-scene, like Arequipa, has extensive 

areas of residential and commercial/industrial evident by 

the relative size and organization of buildings. The 

clear, deep Pacific provided an ocean AOI as did one of 

the larger urban parks indicated as a red tone. There are 

regions of bare soil, typically blue toned, and on slopes 

to the north of the city some dark areas that are also 

relatively bare but with brown tones, most likely related 

to the soil and geologic materials. It should be noted that 

while the classes used in this study are generalized and 

limited in number, for a selection and relative 

comparison of image bands, they were considered 

sufficient. At a future research stage based upon results 

 

Table 2.  Band statistics for Iquitos sub-scene data stack 

Band Minimum Maximum Mean Standard Deviation 

   1       1     255   20            12.1 

   2       2     255   17            11.0 

   3       1     255   19            15.2 

   4       2     255   94            33.4 

   5       1     255   59            23.2 

   6       5     255 157            17.4 

   7       1     255   21            11.6 

   8       1     255   18              8.8 

   9       1     255   13              6.4 

 10       1     255   30            29.6 

 11       1     255   37            34.0 

 12       1     255   41            37.2 

 13       1     255   16            16.8 

 14       1     255   20            18.6 

 15       1     255   22            20.2 

Table 3. Land cover and use classes for three sites 
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Table 3. Land cover and use classes for three sites 

Arequipa Iquitos Lima 

Residential Urban Residential 

Commercial/Industrial Forest Commercial/Industrial 

Agriculture 1 Water Ocean 

Agriculture 2 Mix Forest/Agriculture Urban Green 

Bare Soil  Bare Soil  

Salt Flat  Dark Soil 

 

from this study, more detailed classes might be 

incorporated such as multiple crops types. 

4 METHODOLOGY 

In the first part of this study spectral signatures were 

extracted for each of the LULC classes using AOI 

polygons. To reduce spectral confusion between LULC 

classes, each class was carefully selected using visual 

analysis and as large an AOI as possible was identified. 

As an example, for the Lima study area, very large 

polygons were selected for ocean (124,271 pixels), and 

industrial and commercial (108,915 pixels) classes. The 

other classes had smaller AOIs and total number of 

pixels: residential (68,801), urban (2,985), bare soil 

(5,766), and dark soil (18,301) pixels. This is a result of 

the much smaller number of pixels comprising these 

features, both in terms of the entire study area and with 

respect to their spatial distributions. 

The second part of this study evaluated the use of 

separability measures to determine the single best band, 

and band combinations for different numbers of bands. 

There are various measures of separability for 

evaluating spectral signatures in remote sensing. The 

three measures initially evaluated in this study were 

divergence, transformed divergence, and Jeffries-

Matusita. The results for transformed divergence and 

Jeffries-Matusita for different band combination (e.g. 

best single, two, and three bands), however, became 

saturated at their maximum value for many class pairs. 

This resulted in many band combinations having 

average and minimum values equal to the maximum 

values of 2,000 and 1,414 for transformed divergence 

and Jeffries-Matusita measures, respectively. Therefore, 

only the divergence measure was used to evaluate 

bands. 

Divergence, a measure of statistical distance 

between two classes, provides information on their 

spectral separability. Unlike the transformed divergence 

and Jeffries-Matusita measures, however, the divergence 

measure has no upper bound, that is, it does not saturate 

(Chandra and Ghosh, 2006). It’s an indirect estimate of 

the likelihood of correct classifications between groups 

of different band combinations (Swain et al., 1981). 

Discussions of separability measures, including some of 

their disadvantages, can be found in Richards (2013). 

The formula for divergence is given as (Swain et al., 

1981): 

    
 

 
   (          )(    

        
  )  

 
 

 
   (    

        
  )(      )(      )

 ]  (2) 

where,   and   are the two classes or spectral signatures 

being compared,     and  are the covariance matrix 

and mean vectors for classes   and  ,      is the trace of 

a matrix, and   is the transposition function. 

In this study, the average divergence values were 

used to determine the optimum class separability 

between LULC classes and the best bands to be used 

prior to image classification. The average divergence 

value is expressed as (Richards, 2013): 

        ∑   
   ∑  (  )  (  )            

 
    (3) 

where,   is the number of classes,  (  )  and  (  ) are 

the prior class probabilities for classes   and  , and 

       is the divergence value between classes    and  , 

respectfully. 

A concern in this study was the combination of 

different radiometric resolutions between the TM (8 bit) 

and PALSAR (16 bit) data. The specific question 

addressed; should all the data be rescaled to the same 

radiometric resolution, and what impact this decision 

would have on the selection of the best band 

combinations. To answer this question, separability 

measures by band and using the same AOIs were 

obtained for the combined 8 and 16 bit data stack. A 

second experiment rescaled all data to 8 bit. The results 

of these experiments were identical in separability 

values by band and selection of best band combinations. 

Thus, the radiometric resolution of all data was 

consistently set to 8 bits for analysis. 

5 RESULTS 

5.1 Land Use/Cover Class Statistics 

The spectral signatures (digital number and standard 

deviation) were extracted for the various LULC classes 

for all three sites and examined. Understanding the 

relationships between these signatures is important in 

understanding the LULC class pairs and average 

divergence values. As an example, Table 4 contains the 

spectral signatures for Iquitos. Water, as would be 

expected, has low standard deviation but the mean 

values in the shorter wavelengths are quite high, even 

higher than the forest and mixed 

 



Remote Sensing of Land, 3(1), 15-27, 2019.              B. Haack and R. Mahabir 

22 

 

Table 4. Iquitos, Peru class signatures (Digital number/ standard deviation) 

Bands Water Forest Mix Forest/Agriculture Urban 

1 TM blue 35/1.8 12/1.7 14/3.1 51/11.1 

2 TM green 34/1.2 9/1.5 12/3.6 42/9.7 

3 TM red 46/1.3 9/1.3 11/4.2 52/12.3 

4 TM NIR  21/1.3 95/7.5 116/13.8 73/17.9 

5 TM MIR 1 7/1.1 51/3.5 64/9.8 89/14.5 

6 TM Thermal 173/2.0 145/2.5 148/5.2 214/10.1 

7 TM MIR 2 5/0.9 16/1.3 20/4.8 52/9.6 

8 PALSAR HH 4/1.5 21/5.5 20/5.8 21/11.0 

9 PALSAR HV 2/1.0 16/4.2 15/4.6 15/8.1 

10 HH tex 5x5 1/6.4 28/13.41 27/15.1 54/58.1 

11 HV tex 5x5 2/5.1 29/7.6 30/10.1 71/65.7 

12 HH tex 11x11 2/7.3 30/5.4 31/7.8 81/69.4 

13 HV tex 11x11 1/4.6 17/7.5 15/8.5 39/50.0 

14 HH tex 17x17 1/3.4 17/4.2 17/5.9 52/55.2 

15 HV tex 17x17 1/2.7 18/3.0 18/4.7 60/58.9 

 

 

forest/agriculture classes (as indicated by the values in 

band 6). This is in part a function of the tremendous 

sediment load of the water as can be seen in Figure 2, 

and perhaps because of the mid-morning acquisition 

time of the imagery as well. Also, as expected, the 

backscatter for the PALSAR radar and derived texture 

measures has very low means and standard deviations 

for water as it is a specular feature. 

The forest and mixed forest/agriculture classes 

have very similar statistics in all bands and the 

signatures are generally typical of green vegetation. The 

mean values for the near infrared band is very high 

compared to values in the visible bands for all classes. 

In both bands 4 and 5, the mixed forest/agriculture have 

higher means than the closed canopy forest, which is a 

result of the agriculture having higher near infrared 

reflectance than the forest. The very low radar 

backscatter values (bands 8 and 9) are possible due to 

cleared agricultural fields. These two classes also have 

lower values in the thermal infrared compared to the 

water or urban LULC classes. As would be anticipated, 

the texture means and standard deviations decrease with 

increasing window size. 

The urban signature has similar means in the first 

four TM bands, which helps explains why in Figure 2, it 

appears relatively light grey or blue grey in this false 

color image. The standard deviations for these four 

bands are considerably higher than the other LULCs, 

which is a function of surface variations in the urban 

landscape. The urban area is also the warmest LULC in 

the sub-scene. This class has almost identical mean 

backscatters for the two PALSAR bands as the forest 

and mixed forest/agriculture but higher standard 

deviations typical of the varied components of urban 

features. As expected, the urban radar texture measures 

have much higher means and standard deviations than 

any other class. It is uncertain as to why the mean 

texture bands do not follow a pattern of lowering of 

values with increasing window size, especially for the 

urban signature.  

5.2 Best Single Band and Band Combinations 

Based on the spectral signatures for each site, the 

divergence measure was used to determine the best 

bands that would result in the highest classification 

accuracies. This was done for the best single band, and 

then the best two, three, four, five, and six bands etc. 

until all bands were considered. The selection of 

individual and band combination was based upon the 

average divergence value for all class pairs and for each 

spectral signature. The divergence values for individual 

class pairs were also examined to better understand how 

these values relate to surface features and their spectral 

signatures. The subsections that follow present the 

results of this analysis. 

5.2.1 Best Single Band 

Table 5 contains the ranking by average class pair 

divergence values for the three Peruvian study sites. 

Although each of the study sites was unique with respect 

to their composition of LULC classes, there were similar 

results with respect to the top eight bands’ rankings. The 

best band in all three locations was one of the TM 

optical bands. For Iquitos, the best band was the TM 

near infrared band. For Arequipa, the best band was the 

TM red band. Finally, for Lima, the best band was the 

first TM mid infrared band. Further comparing the 

utility of these TM bands, the results in Table 5 show 

that, with the inclusion of the second TM mid-infrared 

band, these visible and near infrared TM bands were 

among the top eight bands for all study sites. 

Conversely, the TM visible blue and green bands rank 

low among the TM bands and the thermal band is 

consistently the least useful of all the TM bands in both 

the Iquitos and Arequipa sites. Given the coarser spatial 

resolution of the thermal data (i.e. 120 m compared to 

30 m for all other TM bands) and the expected limited 
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Table 5. Peru sites average class divergence rank by individual band 

Rank Arequipa Iquitos Lima 

1 TM red    TM NIR      TM MIR 1 

2 HH texture 17x17    HH texture 17x17 TM MIR 2 

3 HV texture 17x17    TM MIR 1 TM NIR 

4 TM MIR 2     HV texture 5x5   HV texture 11x11 

5 HV texture 11x11     TM vis red TM vis red 

6 TM NIR     HV texture 17x17 TM vis green 

7 TM green     TM MIR 2 TM vis blue 

8 TM MIR 1     HV texture 11x11   HH texture 11x11 

9 TM blue     HH texture 5x5 HV texture 5x5 

10 HV texture 11x11     TM vis green HH texture 5x5 

11 TM Thermal IR     TM vis blue HV 

12 HH texture 5x5     TM Thermal IR HH 

13 HV texture 5x5     HH texture 11x11   

14 HV     HV   

15 HH     HH  

 

 

variation in surface temperatures in the Lima study site 

when these data were obtained, the exclusion of the 

thermal band for Lima would not be expected to provide 

results different from the other sites. As previously 

stated, unfortunately the largest texture window (17 x 

17) was not included for Lima. 

With respect to the derived texture bands, the 

variance texture for the largest windows was among the 

highest ranked bands. For Iquitos and Arequipa, the 

second highest ranking band was the HH texture at 17 x 

17 window size. For Lima, the coarser texture window 

HV variance 11 x 11 texture band is ranked fourth after 

three TM optical bands. Conversely, compared to the 

coarser texture data, the two original PALSAR 

polarizations were among the lowest ranked bands. 

5.2.2 Best Two Bands 

The best two bands for Iquitos were the TM near 

infrared and the PALSAR HH variance texture at a 

window size of 17 x 17; these were also the two best 

single bands as shown in Table 5. These results seem 

reasonable as these bands are from two very different 

types of remote sensing data, representing different 

wavelengths and physical properties of the landscape 

(represented by derived texture values). 

Similar to Iquitos, the best two bands for Arequipa 

were also from two different wavelengths, one of which 

was also a texture band. The best two bands for 

Arequipa were the TM visible red and the PALSAR HH 

variance texture at the largest (17 x 17) window size. 

For these two bands, the highest class separability was 

between bare soil and agriculture. The lowest class 

separability was between bare soil and residential, as 

well as between the two agricultural classes as both 

pairs had the same low divergence value. These high 

and low separabilities are reasonable based upon their 

AOI signature class statistics. For the bare soil and 

agriculture 2 classes, their respective mean signatures 

and standard deviations were 88/3.5 and 53/4.3 in TM 

visible red, and 8/8.0 and 188/59.3 in the HH variance 

texture 17x17 bands, respectively. The low standard 

deviations for the visible red together with the 

difference in means create considerable separability. 

Likewise, while the mean and standard deviation for the 

agriculture 2 texture is high, these values are very 

different than those for the bare soil LULC class and 

thus quite separable. For Lima, the best two bands were 

the TM mid infrared 1 and the PALSAR HH variance 

texture at 11 x 11. 

5.2.3 Best Three Bands 

The best three bands for Iquitos were the TM near 

infrared, TM mid infrared 1, and the PALSAR HH 

variance at a 17 x 17 window. Similarly, compared to 

the results for the best two bands for all sites, these best 

three individual bands represent very different types of 

remote sensing data. With respect to the highest average 

divergence values for all class pairs, there are 

considerable differences for specific class pairs. The 

water and urban LULC classes had the highest class pair 

divergence value followed by water and mixed 

forest/agriculture, and then water and forest. These 

results are understandable following the examination of 

the image sub-scene and the class statistics in Table 4. 

The lowest class pair divergence was between forest and 

mixed forest/agriculture. The best three bands for 

Arequipa were the TM visible red and near infrared 

bands, with the PALSAR HH texture window of 17 x 

17, while for Lima the best three were the two TM mid 

infrared bands and the largest HV texture window. 

Selection of the best three bands is very important 

in remote sensing for creating color composites, which 

are used for viewing imagery and for the manual 

extraction thematic information. The best three band 

combination for Iquitos was examined visually in 

different color and band assignments, with the best 

image shown in Figure 5. This image is a false color 

composite consisting of PALSAR variance texture at 
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Figure 5. Best three band combination for Iquitos.  

 

17x17 window, TM mid infrared 1, and TM near 

infrared in B, G, and Red. The approximate scene width 

is 14 km. 

This figure is not significantly different than the 

standard color infrared composite in Figure 2. The forest 

to the north is more distinct in Figure 5 as is the mixed 

forest/agriculture, however, the water LULC class 

remains visibly about the same. Also, the urban area in 

Figure 5 is less well delineated compared to the color 

infrared image. 

5.3 Other Band Combinations 

The best four bands from 1365 possible combinations 

for Iquitos were TM visible red, near infrared, and mid 

infrared together with the PALSAR HH texture band at 

17 x 17. The best five bands added a second HH texture 

band but at a 5 x 5 window to the best four bands. The 

best six added a third texture band, HV at 17 x 17 

window, to the best five bands. The results for Arequipa 

and Lima were similar in the lack of utility for the 

original PALSAR data, the TM thermal, and the shorter 

TM optical bands. 

As shown in Figure 6, the divergence values 

follow an expected pattern of initially increasing with 

the number of bands. This progression starts with the 

best individual band for Iquitos at an average divergence 

value of 1287 and increases steadily to a peak 

divergence value at 5496 with 11 bands. Following this 

point the divergence value decreases to a low of 3609 

with the inclusion of all 15 bands. However, as 

illustrated in Figure 6, there is minimal increase in 

divergence value from 7 to 11 bands with the divergence 

at seven bands being 5232. 

Similar divergence patterns were observed for the 

other two study sites. For Arequipa, the optimum 

divergence value was at 7 bands. For Lima, in which 

only 12 bands were used, the maximum divergence was 

at 8 bands, however, with minimal increase in 

divergence value moving from 5 to 8 bands. These 

results suggest that there is a negative effect with the 

addition of too many bands and for these data sets, there 

is no reason to include more than 6 bands on average. 

This information provides important evidence for the 

use of separability analysis. It not only indicates what 

bands should be used in the mapping of LULC but also 

the number of necessary bands for a viable LULC 

classification. 

 

 

 

Figure 6. Average class pair divergence values for Iquitos by number of bands. 
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6 CONCLUSIONS 

Today’s remote sensing user is faced with the challenge 

of sieving through large volumes of data in order to 

determine which data are relevant for the intended 

application. One such application is the extraction of 

LULC information, an important tool for understanding 

and monitoring the physical processes affecting the 

Earth. Traditionally, LULC information has been 

derived from optical imagery, however, there has been 

growing interest in the use of radar data to help 

overcome some of its inherent issues. Further, there has 

been an increase in the number of studies that combine 

both optical and radar data in the mapping of LULC. 

Many of these studies show the resulting accuracies to 

be higher when compared to the sole use of either 

optical or radar data. This trend, coupled with the 

upward growth in the deployment and advancement of 

spaceborne sensors and platforms (e.g. SmallSats and 

CubeSats), will continue to see the amount of imagery 

from which LULC information can be derived increase 

as well. As an example, a recent analysis showing this 

upward trend for high spatial resolution imagery found 

that between 1997 (1 satellite) and 2016 (13 satellites), 

79 satellites collecting this type of imagery were 

deployed (Mahabir et al., 2018).  

Towards addressing the need for identifying the 

most relevant data from large remote sensing data 

stacks, this study has examined one approach. More 

specifically, spectral divergence analysis was applied to 

data stacks consisting of optical, radar, and derived 

radar texture measures to determine the best single band 

and band combinations for generalized LULC mapping 

for three locations in Peru. For the single best band, all 

three sites showed this band to be an optical band from 

the TM imagery in the visible red (Arequipa), near 

infrared (Iquitos), and mid infrared (Lima) parts of the 

electromagnetic spectrum. The other TM bands with 

shorter wavelengths and the thermal band were 

consistently ranked among the lower optical bands. In 

the case of the PALSAR data, the original data were 

ranked the lowest for all three sites. Conversely, the 

largest window derived texture bands were among the 

top four ranked bands. These results suggest that, in 

situations where resources are limited with respect to the 

collection of image data, it would be better to prioritize 

the collection of optical data for the LULC 

classification.  

With respect to the best band combinations, for all 

three sites, the best band combinations used imagery 

that was composed of different data types. For example, 

for Iquitos, the best two bands were the TM near 

infrared and the PALSAR HH variance texture at 17 x 

17 window size. The best three bands added the TM mid 

infrared 1 band to the best two bands, with the best four 

bands adding the TM visible red to this combination of 

bands. These specific band combinations are 

understandable, and as discussed in the results, relate to 

the underlying spectral and physical properties of the 

various LULC classes for the different study sites. 

Further comparing the average divergence values 

for each band in the data stacks, the divergence values 

initially increased to a maximum peak and decreased 

thereafter for all sites. In the case of Iquitos and 

Arequipa, the maximum divergence value was achieved 

using 11 bands. However, this increase was marginal 

moving from 7 bands. Likewise, for Lima, while the 

maximum divergence was achieved using 8 bands, there 

was only a small increase in divergence moving from 5 

bands. These results suggest that, at least with the data 

used in this study, there is no need to include more than 

6 bands for viable thematic mapping. Moreover, the 

specific bands required to reach an optimal classification 

were also identified. The method used in this research 

can therefore be used as a simple approach to determine 

which image bands should be collected and prioritized 

prior to LULC classification. Furthermore, such an 

approach may also provide a simple first step towards 

deriving a new LULC nomenclature that may better 

serve the needs of specific geographic regions for which 

currently available LULC databases may be 

inappropriate. 

As with any study various limitations have also 

been identified, which at the same time present 

opportunities of future work. First, the specific LULC 

classes examined in this study were generalized, and 

while they were considered suitable for a relative 

comparison of image bands and LULC classes in this 

research, it would be interesting if a more detailed set of 

LULC classes were used (e.g. multiple crop types). 

Second, other data from different wavelengths and 

sources should be investigated as these could lead to 

different results. This should include data comprising of 

different seasons and wavelengths. Third, only one 

measure of separability was used with the need to 

further compare and contrast the results of other 

measures across different sites. Finally, other texture 

measures should be investigated with the additional 

need to examine the correlation between derived texture 

measures at a range of difference window sizes. 
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