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Abstract  

Simulation of soil erosion is an important phenomenon in watershed 

management studies because of the dynamic nature of soil. The present study 

demonstrates the capabilities of remote sensing coupled with GIS to extract 

soil erosion vulnerabilities using RUSLE model. Therefore this study 

understands spatial distribution of soil erosion at a macro-watershed scale. 

The input parameters for RUSLE model include the rainfall and erosivity (R) 

derived using the TRMM satellite precipitation product for a long term 

implementing regression model. The soil erodibility (K) factor is estimated 

using available soil map, and the topographic factor (LS) from 12m ALOS 

PALSAR DEM. The management practice information was extracted from 

the land use / cover map based on 30m multi spectral LANDSAT-8 of three 

season datasets. The RUSLE model predicted very low, low, moderate, high 

and very high erosion in 84.8%, 7.9%, 4.4%, 2.3% and 0.7% of reviewed 

area, respectively. The results were validated with ground infromation and 

NDVI, being the main identifiers of soil erosion. As presence of high 

vegetation indicates higher strength to hold the soil particles together and 

prevent soil erosion, correlation coefficient was generated to find accuracy of 

the results with NDVI of the area. The strong positive correlation (0.5) 

provided scientific support that prediction of soil erosion by RUSLE can be 

effectively used for watershed management and combating action plan for 

soil erosion. 
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1 INTRODUCTION 
 

Climate change is expected to impact on soil erosion to 

greater extent (Gupta and Kumar, 2017) because spatial 

and temporal patterns of long term soil erosion and 

deposition dynamics are results of complex interactions. 

Several natural processes of the Earth system dynamics 

such as rainfall, flowing water, underground water, 

vegetation growth, soil detachment, transport etc. has a 

great role in soil erosion. Erosion processes driven by 

hydrological factors are extremely complicated therefore 

over the years researchers are trying to find solutions to 

predict soil erosion quantitatively over large landscapes 

(Finlayson and Montgomery, 2003). Soil erosion has 

currently evolved as a global environmental issue which 

is responsible for nearly 85% of land degradation around 

the globe, reducing over time the global crop 

productivity by 17% (Nyesheja et al., 2019). Soil 

erosion therefore adversely affects the rate of crop yield 

and water quality (Lal, 1998). Due to this worldwide 

rise in concern, estimating soil erosion by different 

models at catchment levels has become very popular 

because it helps to provide both quantitative and 

qualitative estimation (Phinzi et al., 2019). Models 

developed till date to calculate soil erosion can be 

broadly divided into (a) empirical, (b) conceptual and 

(c) those based on physical processes (Aksoy and 

Kavvas, 2005; Kinnell, 2010). Universal Soil Loss 

Equation (USLE) is an empirical model introduced in 

the mid-1960s, this model gained wide popularity
 

*  Author address for correspondence  

Punjab Remote Sensing Centre (PRSC), PAU Campus, Near Kitchlu Nagar block „F‟ end, Ludhiana, Punjab (India)-141004.  
Tel.: +91 8528718821 

Emails: snnehra@gmail.com (S. Nehra -Corresponding author); koyelsur3@gmail.com (K. Sur); vkverma@prsc.gov.in (V. K. Verma). 

https://doi.org/10.21523/gcj1.20040101               © 2020 GATHA COGNITION® All rights reserved. 

https://prsc.gov.in/
https://prsc.gov.in/
mailto:snnehra@gmail.com
mailto:koyelsur3@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.21523/gcj1.20040101&domain=www.gathacognition.com&uri_scheme=http:&cm_version=v1.5
https://orcid.org/0000-0003-1233-6487
https://orcid.org/0000-0002-3070-1233
https://orcid.org/0000-0001-5639-2910


Remote Sensing of Land, 4(1-2), 1-11, 2020.                  S. Nehra et al. 

2 

 

over time (Wischmeier and Smith, 1965). Over the past 

few decades, USLE has undergone several significant 

modifications and  up gradation resulting to improved 

versions of empirical model such as the Modified USLE 

(MUSLE) developed by Williams and Berndt, 1977, 

then came Soil Loss Estimation Model for Southern 

Africa (SLEMSA) developed by Elwell (1977), Revised 

USLE (RUSLE) proposed by Renard et al., (1991) and 

Renard et al. (1997), European Soil Erosion Model 

(EuroSEM) (Morgan et al., 1998), USLE-M (Kinnell 

and Risse, 1998), and RUSLE (Foster et al., 2003). 

Amongst these models, RUSLE has been proven to be 

the most frequently used empirical model because it is 

also computer based model which provides a clear 

perspective for understanding the interaction of erosion 

and its causative factors (Alexakis et al., 2013). The 

biggest advantage of RUSLE is that it can be stimulated 

in the Geographic Information System (GIS) 

environment where satellite based datasets are used to 

derive several factors for the model as input parameters. 

Annual soil loss is estimated from the combination of 

the six factors contained in RUSLE: rainfall erosivity 

(R), soil erodibility (K), slope length (L), slope 

steepness (S), soil use and management (C) and support 

practices (P). 

Remote sensing provides several important 

inferences from the earth observation data and allow us 

to gain insights into interactions between physical 

processes and environmental conditions that control 

erosion and landform evolution. Satellite derived images 

are preferred than traditional methods which are related 

to field measurements because although they gave 

detailed and accurate measurement at plot scale but 

employing this methods at catchment levels are really 

difficult and require considerable amount of time, 

money, and effort. RUSLE provides an ideal framework 

for assessing soil erosion and its factors (Ganasri and 

Ramesh et al., 2016). The RUSLE model can identify 

soil loss possibility in GIS environment by pixel cell-by-

cell method which helps to recognize individual spatial 

classes of the soil erosion in a big area effectively 

(Shinde et al., 2010). RUSLE model can be calculated at 

different geospatial scales in the digital platform. The 

research objectives of this study are: (1) to develop a 

methodology that combines remote sensing data and 

GIS with RUSLE to estimate spatial distribution of soil 

erosion at a macro-watershed scale with validation of 

the results using rigorous field work over the study area. 

2 MATERIALS AND METHODS 

2.1  Study Area 

The present study was carried out over a macro- 

watershed upstream of Nangal reservoir with a total area 

of 8390 ha, selected mainly because of the spatial 

diversity of plant cover and the variety of soil classes 

and slope (Figure 1). The climatic characteristics 

indicate generally dry hot summer (except in the south-

west monsoon season) and a bracing cold winter. The 

temperature ranges from minimum of 4°C in winter to 

45°C in summer. The study area lies in the foothill 

regions of the Siwaliks where potential soil erosion rate 

is maximum. The point of interest in the study was to 

see whether RUSLE integrated in GIS environment was 

being able to be captured the soil erosion at this spatial 

scale and variation. 

 

 

Figure 1. Study area: Nangal watershed of Punjab, India 
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2.2 Data Used 

Three sets of Landsat-8 images (Kharif, Zaid and Rabi) 

were used in this work for generating thematic layers of 

land use / land cover (Table 1). ALOS PALSAR digital 

elevation model was used to derive elevation data. 

Rainfall data used for deriving R factor used in RUSLE 

was generated using Tropical Rainfall Mapping Mission 

(TRMM) datasets of last 18 years. Available soil map on 

1:50000-scale was used for soil erodibility (K) 

extraction. Field survey was also conducted in three 

different seasons for validation of the final output by 

collecting GCPs.  

2.3 Analysis and Visualization 

Implementation of the RUSLE model in GIS involves 

creating a work flow in computer based environment 

that includes input data processing, model computation, 

and analysis of results (Figure 2). The GIS provided 

powerful tools for analysis, visualization of modeling 

and specialized tools to perform model calibration and 

validation. 

2.4 RUSLE Model 

RUSLE is often used to monitor soil erosion in 

agriculture watersheds ranging from macro to mini 

watersheds across the world (Udayakumara et al., 2010). 

This model was particularly selected for this study 

because of its demonstrated effectiveness. The RUSLE 

(Renard et al., 1997) model can be expressed as equation 

(1) and the methodology followed to map soil erosion. 

             

A = Computed soil loss per unit area per year (t/ha per 

year); R = Rainfall erosivity factor (MJ mm ha-1h-1year-

1); K = Soil erodibility factor (t ha MJ-1mm-1); LS = 

Slope length and steepness factor (dimension less); C = 

Cover management factor (dimension less); P = Support 

practice factor (dimension less). 

 

 

Figure 2. Methodology 

 

Table 1. Data 

Data Source Resolution 

Digital Elevation Model https://urs.earthdata.nasa.gov/  12.5 m 

LANDSAT 8-OLI www.earthexplorer.com  30 m 

Soil data Soil and Land Survey of India 1:50000 

Rainfall data TRMM (Monthly Data) https://pmm.nasa.gov/data-

access/downloads/trmm 

0.25º×0.25º 

 

 

https://urs.earthdata.nasa.gov/
http://www.earthexplorer.com/
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
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2.4.1 Rainfall Erosive Factor (R)  

The rainfall erosivity factor is measured by rainfall 

intensity thus R basically explains the effect of raindrop 

on the ground. The modeling of R factor in GIS 

environment requires continuous satellite retrieved 

precipitation data. Therefore, monthly rainfall data 

product of TRMM satellite was downloaded over the 

study area for 18 years (1998-2015) and used to 

calculate the R-factor. Random 50 points were plotted 

over the study area. The locations and altitude of each 

point was calculated. Multiple regression models were 

used to derive a coefficient against each point‟s altitude, 

longitude, latitude and rainfall. Finally rainfall intensity 

was calculated using the equation given by Van der 

Kaniff et al. (1998). 

       

   is rainfall intensity in mm, a = coefficient derived 

from the multiple regression model. 

2.4.2 Soil Erodibility Factor (K)  

Soil erodibility is a function of soil texture, structure 

(e.g., macro porosity, aggregate properties), organic 

matter content, hydraulic properties and wetness of soil 

due to rain water and runoff (Blanco-Canqui and Lal, 

2008). In this study available soil map was used to 

derive the soil erodibility (K) classes using standard 

classification scheme (Table 2). Since this watershed 

has thick forested layer whereas detailed field survey 

were not possible.  

2.4.3 Slope Length and Steepness Factor  

The topographical factors slope length (L) and the slope 

steepness (S) represents a ratio of soil loss below 

specified condition to any site (Ganasri and Ramesh., 

2016), it is a unit less factor.  The highest and the lowest 

slope represent the maximum potentiality of soil erosion 

as LS factor generate high overland flow velocity and 

similarly higher runoff (Zhao et al., 2020). To obtain 

slope length (L) and slope steepness (S), ALOS 

PALSAR DEM data was used. This resolution was 

chosen by accurately defining flow direction in the 

watershed, using the “flow direction” tool of the Arc 

GIS software. Slope length corresponded to 10.0 m, 

when water flow was perpendicular to the pixel line and 

14.14 m when it was diagonally oriented. The slope 

length factor was computed using the equation below: 

              

Where,   = Slope length factor, µ = horizontal projected 

slope length (m) 

m = slope length exponent, (µ=flow accumulation   

cell size) 

In this equation „m‟ slope length varies based on 

slope steepness, m equals 0.5 if the slope is 4.5% or 

more; 0.4 if the slope is 3-4.5%; 0.3 if the slope is 1-3% 

and 0.2 of uniform gradient of less than 1% 

(Wischmeier and Smith, 1978).  

2.4.4 Cover Management Factor (C)  

The C-factor is important because it helps to indicate 

how soil loss potential will be distributed in time under 

different land use/land covers and during crop rotations, 

construction or other management activities (Thomas et 

al., 2018). To identify the C-factors, GIS techniques 

were used to extract thematic layer of land use / land 

cover of the study region from the satellite imagery. 

Then the literature based C-factor values were assigned 

for different land use / land cover in the study area 

according to Table 3. 

2.4.5 Support Practice Factor (P)  

Support practice factor represents the positive impacts 

of support practices on the soil it is often described as 

the ratio of soil loss by a support practice to that of 

straight-row farming up and down the slope (Renard 

and Foster, 1983). The P-factor indicates conservation 

practices adopted in the watershed including terracing, 

bunding, strip cropping, check dam etc.  The value of P- 

factor ranges from 0-1, in which 0 values represent 

high-quality preservation practice and the value 

resembling one indicates poor protection practices 

(Morgan et al., 1998). In catchment areas often several 

mitigation practices like terracing and contour tillage 

among other practices cannot be reflected in land use 

maps (Fu et al., 2005). Therefore, P-factor information 

was calculated through empirical method proposed by 

(Wener, 1972): 

                

Where,   = Slope steepness,   = P-factor 

2.4.6 Annual Soil Loss (A)  

Soil loss determined using the RUSLE model using the 

Arc GIS software, was classified into five classes of soil 

loss: 0-2; 2-4; 4-6; 6-8 and >8 t/ha/yr.  

3 RESULTS AND DISCUSSIONS 

3.1 Rainfall Erosivity Factor (R) 

Since many studies often indicate that rainfall is the 

main indicator of soil erosion in any region therefore the 

pattern of rainfall in this region needs to be studied 

carefully. The monthly rainfall datasets were summed 

up to get the annual rainfall of each year over the study 

area. More than 400 mm of rainfall is witnessed in all 

the years and an average of 800 mm has been observed 

in this region over 18 years (Figure 3). In the present 

analysis average annual rainfall was used for R-factor 

calculation (Figure 4a).  
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Figure 3. Rainfall pattern (1998-2015) 

 

Table 2. Classification scheme for K-factor 

Texture class Average Less than 2% More than 2% 

Clay 0.22 0.24 0.21 

Clay loam  0.30 0.33 0.28 

Coarse sandy loam 0.07  0.07 

Fine sand 0.08 0.09 0.06 

Fine sandy loam 0.18 0.22 0.17 

Heavy clay 0.17 0.19 0.15 

Loam 0.30 0.34 0.26 

Loamy fine sand 0.11 0.15 0.09 

Loamy Sand  0.04 0.05 0.04 

Loamy very fine sand 0.39 0.44 0.25 

Sand 0.02 0.03 0.01 

Sandy clay loam 0.20  0.2 

Sandy loam 0.13 0.14 0.12 

Silt loam 0.38 0.41 0.37 

Silt clay 0.26 0.27 0.26 

Silt clay loam 0.32 0.35 0.3 

Very fine sand 0.43 0.46 0.37 

Very fine sandy loam 0.35 0.41 0.33 

 

Table 3. Classification scheme for C-factor (Kent, 1972) 

Land use/land cover C-factor 

Degraded forest 0.0006 

Dense forest 0.003 

Double cropped 0.20 

Fallow 0.80 

Single cropped 0.62 

Steeply sloping 0.80 

Undulating land with or without grass 0.14 

Water body 1.00 
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Figure 4. Thematic maps: (a) Rainfall erosivity factor, (b) Soil erodibility factor, (c) Slope length and steepness factor 

and (d) Land cover management factor 
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Figure 4. Thematic maps: (e) Support practice factor and (f) Soil loss estimations 

 

The estimated R-factor ranges from 165 to 183 mm.ha
-1 

hr
-1

/year in the study area. The R-factor calculated has 

been divided into five major zones as seen in Table 4 

and Figure 4(a). 165-169 mm.ha-
1
hr

-1
/year covers 5307 

ha, 169-172 mm.ha
-1

hr
-1

/year covers 667 ha, 172-176 

mm.ha
-1

 hr
-1

/year covers 563ha, 176-180 mm.ha
-1

 hr
-

1
/year covers 526ha and 180-183 mm.ha

-1
 hr

-1
/year 

covers 1327 ha. This region experiences orographic type 

of rainfall, the foot hill region in the northern part of the 

study area experiences heavy rainfall and gradually the 

erosivity rate decreases as the land slopes down towards 

the plain. 

Table 4. Rainfall erosivity factor  

R-factor  Area (ha) 

165-169 5307 

169-172 667 

172-176 563 

176-180 526 

180-183 1327 

Total  8390 

 

3.2 Soil Erodibility Factor (K) 

The study area is classified into four major soil 

erodibility classes based on soil texture. The study area 

comprises of four major soil textural classes i.e. loamy 

sand, sandy loam, silt and loam (Figure 4b). Maximum 

area is covered by loamy sand with an average soil 

erodibility factor of 0.3. The sandy loam soils possess an 

average erodibility factor of 0.13. Silty loam soils found 

in small patches provides an average of 0.38 soil 

erodibility factor. Very small patches of loam soils are 

found in the southern part of the study area. The silt 

loam soils K value as 0.38 occupies 328 ha of land, 

whereas sandy loam soils and occupies 1504 ha of land. 

Table 5 shows the distribution of the soil erodibility 

factor. 

3.3 Slope Length and Steepness Factor (LS) 

Topographic factor represents the basic influence of 

slope length and slope steepness on erosion process. LS- 

factor was calculated in ARCGIS by considering the 

flow accumulation and slope in percentage as the input 

factors. From the analysis, it is observed that the value of 

topographic factor increases as the flow accumulation 

and slope increases. The general slope of the region 

ranges between 0 and 1.8 from east to west. Maximum 

slope of the area is between 0 and 0.3 which occupies 

6895 ha of land in the study area. Only 53 ha of land is 

under very high steepness factor influence which is in 

the hilly forested region bounded on the right hand part 

of the study area. Table 6 shows the distribution of slope 

length and steepness factor and Figure 4c demonstrates 

slope steepness factor.  

3.4 Cover Management Factor (C) 

Land use and land cover helps to understand land 

utilization pattern of any region and in turn land 

utilization helps to understand the erosion rate of that 
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particular land cover. Thus, cover management is one of 

the crucial factors. The study region is mainly covered 

by dense forest, which is around 5448 ha in the eastern 

part and 0.004 is the C-factor in this region because the 

rainforest in this region contains huge tall trees with high 

density canopy cover which protects the ground below 

from random erosion factors (Figure 4d). Around 1301 

ha land is covered by crop land which is vulnerable 

because this region goes under three cropping season 

thus soil particles are open to more erosion this region 

has a cover factor of around 0.28. Urbanization has 

contributed towards erosion to a great extent and it is 

most vulnerable land use because it spoils the top soil 

totally and covers an artificial concrete floor. Thus, 787 

ha of land in the study area gave C-factor of 1. A very 

small part of the land is bare which are almost a waste 

lands it covers an area of 183 ha and has a C-factor of 

around 0.18 this land is affected only by natural 

geomorphic agents and not by any other external agents. 

Land without scrub has been given 0.7 C-factor because 

scrub does not have much of canopy cover to protect the 

soil. Water body in this region covers around 554 ha 

which is 0 C-factor because it is the least receptive land 

cover towards erosion. Table 7 shows crop management 

factor distribution. 

3.5 Support Practice Factor (P) 

The analysis clearly shows that the area can be divided 

into two major classes according to support factor. The 

crop land in this region although is prone to more 

erosion due to exhaustive agriculture practices but these 

regions also go for green manuring at frequently after 

each crop rotation in three different seasons therefore, P- 

factor in this region is 0.28 (Figure 4e). However, rest of 

the land use and land covers like water body, dense 

forest, land without scrub, land with scrub and 

settlement does not have any managerial practices over 

this region therefore, 1 is distributed over these areas 

(Table 8). 

3.6 Annual Soil Loss (A) 

Integration of soil erosion parameters in RUSLE model 

in GIS environment provided annual soil loss at pixel by 

pixel basis to study the spatial distribution of soil erosion 

in the study area (Table 9, Figure 4f). The area can be 

graded into five vulnerability zone like very low, low, 

moderate, high and very high.   

It is seen that 7116 ha area is under erosion rate of 

0-2 t
-1

/ha
-1

/yr, 663 ha area is under erosion rate of 2-4 t
-

1
/ha

-1
/yr, 370 ha area is under erosion rate of 4-6 t

-1
/ha

-

1
/yr, 370 ha area is under erosion rate of 6-8 t

-1
/ha

-1
/yr, 

186 ha area is under erosion rate of 6-8 t
-1

/ha
-1

/yr and 

55ha area is under erosion rate of 6-8 t
-1

/ha
-1

/yr. 

Immediate attention needs to be given to the 55 ha of 

land which is very highly prone to soil loss. Very high 

erosion rate is witnessed in the lower foothill parts of the 

hilly mountains because the river gushes down the slope 

and erodes the slopes by lateral and vertical movement 

of water downwards. Since Nangal Dam controls the 

water management factors in two major agricultural 

states of Punjab and Haryana, it can be affected 

adversely any time due to the high erodibilty in the 

upper reaches of the study area, thus management 

practices needs to be implemented properly to save the 

natural resource in the region. 

3.7 Validation of Results 

Several workers reported integration of RUSLE in the 

GIS environment sans validation of soil loss estimation, 

which needs to be carried out to evaluate the authenticity 

of the results. The study area was very challenging as 

most of the places were inaccessible due to geographical 

hindrances and being upstream of the reservoir. 

Therefore, validation was done by collecting maximum 

points possible in the lower reaches on both sides of the 

river and few points in the lower foothills of the forested 

hilly areas. Random places were chosen and total of 35 

points were visited, and ground information was 

gathered in correspondence to their latitude and 

longitude values using GPS. Further a Normalized 

Differential Vegetation Index (NDVI) map was 

generated in the GIS environment which included three 

seasons‟ datasets to extract the vegetation cover 

percentage in the study area and a correlation of 0.5 was 

found between the NDVI and the soil loss erosion map 

t/ha/yr (Figure 5). This positive strong correlation 

suggests quite good accuracy level of the soil loss 

estimation map generated in the GIS environment 

(Figure 6).  

 

 

 

Table 5. Soil erodibility factor 

Texture Average Less than 2% More than 2% Area (ha) 

Loam 0.3 0.34 0.26 184 

Loamy sand 0.04 0.05 0.04 6374 

Sandy loam 0.13 0.14 0.12 1504 

Silt loam 0.38 0.41 0.37 328 

Total  

   

8390 
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Figure 5. Correlation between vegetation cover and soil losses 

 

 

Table 6. Slope length and steepness factor 

 

 

 

Table 7. Crop management factor 

Land use classes  C-factor  Area (ha) 

Water bodies  0 554 

Dense forest   0.004 5448 

Land without scrub   0.18 183 

Crop land   0.28 1301 

Land with scrub   0.7 117 

Settlement 1 787 

Total    8390 

 

 

Table 8. Support factor 

Land use/ land cover  P-factor  Area (ha) 

Crop land   0.28 1301 

Water bodies  1 7089 

Dense forest   1 

Land without scrub   1 

Land with scrub   1 

Settlement 1 

Total   8390 

 

LS-factor  Area (ha) 

0 -0.3  6895 

0.3 -0.6  785 

0.6-1.2 442 

1.2 - 1.8 214 

>1.8 53 

Total  8390 
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Table 9. Soil losses 

Soil loss (t/ha/yr) Area (ha) Vulnerability 

0-2 7116 Very low 

2-4 663 Low 

4-6 370 Moderate 

6-8 186 High 

>8 55 Very high 

 

 

Figure 6. Distribution of ground truth points with photographs 

 

4 CONCLUSIONS  

RUSLE can be easily integrated in the GIS platform and 

the inputs required for this model can be derived from 

multi-sources like satellite based data, available maps 

and in-situ observations. The topographic parameters 

can be readily extracted from DEMs facilitating GIS 

based erosion modeling. In spite of advances in sensor 

technologies, uncertainty and coarseness of critical 

parameters like spatial distribution of soils, and rainfall 

still remain the weak components of erosion modeling 

using RUSLE. The model results reasonably match with 

the observed field survey and majority of the area falls 

under moderate to low risk of soil erosion. Only, 55 ha 

of land is under threats of very high erosion rate per 

year. The results obtained from the study can assist in 

developing management scenarios and provide options 

to policy makers for managing soil erosion hazards in 

the most efficient manner for sustainable management 

plans. 
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