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Abstract  

The study presents an approach to map Land Use / Land Cover Change (LULCC) at large 

scale and processing techniques that permit higher accuracy. IRS RESOURCESAT-2 

LISS-IV images of Nellore district of Andhra Pradesh were used to apply the classification 

technique. In multi-scale feature extraction approach LULCC takes two forms i.e. 

conversion from one category of LULCC to another and modification of condition within 

a category. Thus, major LULCC classes were extracted using object based approach and 

uncertain classes were identified using onscreen knowledge based method. The results 

shown in 2009, the accuracy of cropland, water body and built-up segments were 99.3%, 

94.79% and 89.72%, respectively, whereas, in 2013 the accuracies were 94.31%, 88.26% 

and 81.20%, respectively. Hence, this classification approach can be useful in different 

landscape structure over the time, which can be quantified and assessed to achieve a better 

understanding of the land cover. 
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1 INTRODUCTION 
 

Precise and timely land use / land cover (LULC) 

information is essential to many government and private 

organizations at local, regional, national and global 

levels for different applications such as environmental 

monitoring and planning, LULC change modeling, 

transportation planning, urban development planning, 

urban modeling, etc. Remotely sensed data have been 

the major sources of prepared LULC maps (Chen and 

Stow, 2003). For preparing updated LULC information 

at different scales, remote sensing image classification 

techniques have been developed since 1980s. During 

1980s and 1990s, most classification techniques were 

employed by keeping image pixel as the basic unit of 

analysis, in which each pixel is labeled as a single 

LULC class. Although a large number of remote sensing 

classification techniques have been developed in recent 

decades (Lu and Weng, 2007), based on spectral 

variables; whereas spatial information was more or less 

ignored. Spectra-based classification approaches are 

conceptually simple and easy to be implemented, but 

they neglect the spatial components, which are inherited 

in real-world remote sensing imagery (Moser et al, 

2013). A number of LULC types cannot be effectively 

separated with spectral information and thereby less 

than desired accuracy has been reported with spectra-

only classifiers (Tso and Mather, 1999; Stuckens et al, 

2000). For example, there has been a consensus that 

impervious surfaces and bare soil (e.g. bright urban 

impervious surfaces and dry soil, and dark impervious 

surfaces and moist soil) cannot be effectively separated 

only with spectral information. These issues become 

severe with the continued advancements in satellite 

sensor technologies to capture images at high spatial 

resolution (i.e. LISS-IV and CARTOSAT-1, 2A, 2B). 

With higher spatial resolutions, images are likely to 

have higher within-class spectral variability. As a result,  
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less than satisfactory results have been reached with 

spectral classifiers (Myint et al, 2011). In remote 

sensing literature, such approaches have been generally 

called “spatio-contextual” image classification, 

indicating the relationship between a “target” pixel and 

its neighboring pixels is incorporated into analyses (Tso 

and Mather, 1999). These spatio-contextual image 

classification approaches can be grouped into three 

categories, including 1) texture extraction, 2) Markov 

random fields (MRFs) modeling and 3) image 

segmentation and object-based image analysis (Stuckens 

et al, 2000; Blaschke, 2010; Thoonen et al, 2012; Moser 

et al, 2013). Compared to traditional per-pixel and sub-

pixel classification methods, object-based models 

provide a new paradigm to classify remote sensing 

imagery (Blaschke, 2010; Myint et al, 2011). As the 

high spatial resolution images convey more ground 

information and allow Earth observations with enhanced 

accuracy of digital information (Aksoy et al. 2010) and 

thus efficient and accurate extraction of objects from 

these data is attracting greater attention from remote 

sensing researchers (Baltsavias, 2004). Hence, object-

based approaches are more appropriate for high 

resolution remote sensing images since they assume that 

multiple image pixels form a geographic object. So, 

instead of considering an image as a collection of 

individual pixels with spectral properties, object-based 

methods generate image objects through image 

segmentation (Pal and Bhandari, 1992). Accordingly, 

object-based image analysis can simultaneously take the 

spectrum, shape, texture, and semantic relation into the 

feature space to improve interpretation accuracy (Benz 

et al 2004; Zhang et al 2013); hence, the use of object-

based classification of high resolution image shows a 

thriving upbeat in innovation of new and novel 

techniques. 

Meaningful objects always exist over a certain 

range of scales in segmentation of remote-sensing 

images (Yuan et al, 2014). Hence, to overcome the 

limitation of the object-based classification an approach 

has been adopted to enhance the accuracy of the satellite 

image classification incorporating onscreen 

modification of post classified image segments. This 

approach has been taken after observing heterogeneity 

of the study area, where, built-up areas are with urban, 

rural, industrial and infrastructure, discriminate water 

bodies from numerous aqua ponds and partial wetland, 

discriminate bare lands from vegetated open areas, 

coastal sand from riverine sand and abandoned aqua 

ponds. Earlier studies on object-based classification 

approaches have shown significant higher accuracy 

(Benz et al, 2004; Wang et al, 2004; Myint et al, 2011). 

The objective of the present study is to use optimal 

combinations of object-based and visual LULC 

classification to obtain higher classification and post-

classification change detection accuracies. This hybrid 

method was applied to IRS RESOURCESAT-2 LISS-IV 

satellite images of the coastal region of Andhra Pradesh, 

India. The focus of our study is on LULCC because of 

rapid industrialization is taking place along the coastal 

part of this region along with urban expansions.

 

 

Figure 1. Location map of the study area
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2   STUDY AREA 

The part of Eastern coastal belt of India, which is a part 

of Nellore district of Andhra Pradesh has been selected 

as the study area for present study. The study area 

covers an area of 404.46 km
2
 and located between 14º 

18' 45" N to 14º 29' 30" N and 79º
 
58' 55" E to 80º 10' 

20" E (Figure 1). The terrain is nearly plain to gently 

sloping area characterized by agricultural land in most 

of the region. River Penner flows through Northern part. 

The mean minimum temperature ranges from 19.9ºC to 

28.1ºC and maximum from 28.9ºC to 39.4ºC and normal 

rainfall is 1080.5mm. The soil is characterized by sandy 

clay loam. 

3 MATERIALS AND METHODS 

3.1 Data Processing 

Two cloud-free IRS RESOURCESAT-2 LISS-IV 

datasets, one from March 22, 2009 and one from March 

13, 2013 (WGS 84) with a pixel size of 5.8m x 5.8m 

were used (Table 1). These images were selected on the 

basis of their availability and the quality of datasets for 

the study area. Although different LULC classes for 

each of the two RESOURCESAT-2 LISS-IV images 

were conducted separately. Atmospheric correction was 

also performed. 

ERDAS Imagine (2015) was used to process the 

atmospheric correction of LISS-IV images using the 

ERDAS Model maker. Image segmentation was 

performed using eCognition developer 9.0 (2015). Post 

segmentation rectification and classification accuracy 

assessment was performed using ArcGIS 10.2.2. 

Thirteen level-2 LULC classes were selected for the 

classification process of 2009 and 2013 datasets 

following the classification scheme of NRSC (2011) 

(Table 2). 

3.2 Ground Validation 

The locations of these training sites were captured using 

GPS enabled geotagged camera. Additional training 

samples for each land cover class (190 in total) were 

derived from high resolution imagery available in 

Bhuvan Geo-portal (Bhuvan, 2016). The training 

samples were used as inputs for the classification 

analysis and accuracy assessment.  

3.3 Image Classification 

The steps for preparing a LULC map that includes the 

combination of the object-based and onscreen LULC 

classification is presented in the map (Figure 2). In the 

object-based classification method, the LISS-IV images 

were segmented into image objects. This segmentation 

process creates image objects that reflect group of 

spatially homogeneous neighboring pixels are iteratively 

clustered until a preset threshold is exceeded. If more 

weight is assigned to particular spectral layers, these 

layers have more influence on the resulting 

segmentation boundaries. The parameters used during 

the segmentation process are scale, shape and 

compactness. The scale parameter determines the 

maximum size of the created object, the shape factor 

controls for the spectral information and shape, and the 

compactness factor determines compactness of the 

objects’ edges/borders (Definiens, 2010).  In the present 

study merging technique has been successfully applied 

on satellite images to extract the major LULC classes. In 

this study a visual resemblance to potential objects were 

recognized following a ‘trial and error’ approach (Im et 

al. 2008; Robertson and King, 2011). Hence, major 

LULC classes like built-up, cropland and water bodies 

were clipped out separately from the segmented layers 

to avoid redundancy (Figure 2). 

In this study, to bring out a satisfactory visual 

match between image objects and landscape features, 

the segmentation parameters (scale- 5, shape- 0.1 and 

compactness- 0.5; a weight of 2 for the infra-red layer) 

were selected on the basis of assigned value of Gutiérrez 

et al. (2012), which proved satisfactory during field 

visits in the summer of 2015. 

 

 

Table 1. Satellite image specifications 

Satellite Sensor Dates of pass Spatial 

resolution 

Spectral 

Resolution 

Radiometric 

Resolution 

IRS R-2 LISS-IV 
22 March, 2009 

5.8 m 3 bands (2,3,4) 
8 bit 

13 March, 2013 16 bit 
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Figure 2. Schematic Preparation 

   

3.4 Segmentation and Overlay 

Segmentation was performed on LISS-IV image of 

2009. After segmentation, output layers were used for 

onscreen modification and extraction of sub-classes 

using ArcGIS software. Advantage of updating and 

converting level-1 segments into level-2 sub-classes 

using onscreen value addition lies in its simplicity and 

error less interpretation. All the value added data was 

bring into one database using union method. It has also 

been noticed that the union layer has increased the no of 

features, which were further dissolved according to 

classes and to reduce feature number. Slivers were also 

eliminated through merging with adjacent bigger 

polygons.  To remove the staircase geometric shape of 

the segments using 25m smoothening process was 

implied and finalized through topological correction. In 

the next step of image classification we have used the 

total classified vector dataset of 2009 and overlaid on 

2013 satellite image to identify the LULC changes using 

onscreen interpretation (Roy et al, 2015). Thus, same 

dataset of 2009 has been updated with additional field 

contained 2013 LULC classes. Accuracy assessment 

reports for individual class categories and overall 

classification accuracies were performed for classified 

image of 2013. 

3.5 Change Detection 

A multi-date post classification comparison change 

detection technique was used to determine changes in 

LULC between 2009 and 2013. This is perhaps the most 

common approach to change detection (Jensen, 2004) 

and has been successfully used by NRSC (2011) to 

monitor LULC changes at 1: 50000 scale for entire 

India. The post-classification approach provides ‘From–

To” change information and the kind of landscape 

transformations that can be easily calculated and 

mapped (Yuan et al, 2005). A change detection map 

with 62 combinations of ‘From-To’ change information 

were derived from prepared for 2009 and 2013.
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Table 2. Land use / land cover classification schemes (NRSC, 2011) 

Level 1 classes Level 2 classes LUCODE Description 

Built up Compact 1 All places with a municipality, corporation or 

cantonment or notified town. 

Sparse 2 Areas where discrete uses are not distinguishable or 

separable. 

Vegetated/open area 3 Includes vegetation cover midst urban areas, play 

grounds, stadium, racecourse, golf course, gardens, 

parks, zoo, beaches and skiing areas. 

Rural 4 Built up areas smaller in size, mainly associated with 

agriculture and allied sectors and non-commercial 

activities. 

Industrial 5 Human activity is observed in the form of manufacturing 

along with other supporting establishments of 

maintenance. Heavy metallurgical industry and thermal 

cement, petrochemical, engineering plants. 

Agriculture Cropland 6 Areas with standing crop as on the date of satellite 

overpass. It appears bright red to red in color with 

varying shape and size in a contiguous to non-contiguous 

pattern. 
Fallow land 7 Cropland areas, which are uncropped during the 

agricultural year under consideration as on the date of 

satellite overpass during all cropping seasons. 

Plantation  8 Includes tea, coffee and rubber, which are normally 

grown in the hilly regions and closely associated with 

forest cover. 

Aquaculture 9 Located mostly along the coast or in lakes, river and 

estuaries where fish are bred and reared for commercial 

purposes. 

Wasteland Scrub land 13 The land which is generally prone to deterioration due to 

erosion.  

Sandy 15 Areas that have stabilized accumulation of sand, in 

coastal, riverine or inland areas. 

Wetland Wetland 16 All submerged or water saturated lands, natural or man-

made, inland or coastal, permanent or temporary, 

vegetated or non-vegetated, which necessarily have a 

land-water interface. 

Water body Water body 17 Surface water in the form of rivers, canals, ponds, lakes 

and reservoirs. 

 

3.6 Classification and Change Detection Accuracy 

Assessment 

Assessments of the classification accuracy of the LULC 

maps were conducted by comparing samples of the 

classified layer and reference layer following Congalton 

(1991). Fifty reference points were verified by field 

visits, and 190 reference points were verified through 

comparison with recent Bhuvan imagery dated between 

2009 and 2014 (Bhuvan, 2016). The class and overall 

accuracies, which provide an indication of the 

classification agreement between two maps (the 

classified and the ground-truth maps) that is not 

attributable to chance, were calculated and are presented 

as error matrices. The change detection accuracy was 

obtained by random sampling method to calculate an 

error matrix for obtained classes (Fuller et al, 2003; 

Yuan et al, 2005). Classification of the polygons as 

‘change’ and ‘no change’ in the resulting LULC change 

layer was conducted. A total of 24282 polygons were 

used in the change detection assessment: 12748 

polygons for the ‘change’ and 11534 for the ‘no change’ 

category. All reference polygons were validated through 

field visits and an inspection of Bhuvan imagery. 
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4 RESULTS AND DISCUSSIONS 

4.1 Segmentation Accuracy 

Extraction of major LULC dominant classes separately 

through segmentation shows higher accuracy to identify 

objects with homogenous spectral and textural 

characteristics. In the present study, the built-up, 

cropland and water body were having higher dominance 

over the study area (Saxena et al, 2014) hence, were 

segmented separately (Figures 3, 4 and 5). The results of 

the segmentation accuracy are presented in table (Table 

3). The accuracy assessments with respect to the post 

classified segments of 2009 show overall accuracy of 

cropland, water body and built-up segments were 

99.3%, 94.79% and 89.72%, respectively. 

It was noticed from the accuracy of the built-up 

segment that due to complexity of LULC of the study 

area (Lu and Weng, 2007), it has achieved a 

comparatively less than water body and cropland. More 

specifically the presence of abandoned aqua ponds and 

adjacent built-up areas have created similar textural and 

spectral identity which were reduced the efficiency to 

extract segments precisely. 

Table 3. Accuracy assessment for segmentation 

Segments Accuracy  

Built-up 89.72% 

Cropland 99.30% 

Water body 94.79% 

 

 

Figure 3. Extraction of built-up segment 

 

 

Figure 4. Extraction of cropland segment 
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Figure 5. Extraction of water body segment 

 

4.2 Modification and Extraction of Sub-Classes 

Extraction of major LULC classes and many sub-classes 

cannot be depicted either object based or pixel based 

method. Thus, through onscreen value addition to the 

extracted segmented layer, thirteen level-2 classes were 

brought out. Table (Table 4) shows total number of 

segments was classified at level-1, which were further 

sub-divided into thirteen LULC classes at level-2.  

It has also been noticed from the LISS-IV satellite 

image that, the study area is covered by few irrigation 

canal which is covering an area about 2.9 sq. km. 

Similarly, the study area is covered by few major roads 

and rails which are covering an area about 0.73sq.km. 

These segments have been extracted onscreen to 

incorporate in LULC mapping (Figure 6 and Table 5). 

 

Table 4. Modification of extracted segments at level-2 

Level-1 Level-2 Segments Total Extraction type 

Built-up Compact 129 559 Automatic 

Sparse 67 Value addition to compact 

Vegetated 94 Value addition to compact 

Rural 210 Value addition to compact 

Industrial 59 Value addition to compact 

Agriculture Cropland 2532 5238 Automatic 

Fallow land 814 Manually 

Plantation 126 Value addition to cropland 

Aquaculture 1766 Value addition to water body 

Wasteland Scrubland 425 428 Manually 

Sandy area 3 Value addition to built-up 

Wetland Wetland 62 62 Value addition to water body 

Water body Water body 203 203 Automatic 
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Table 5. Modification of extracted segments at level-2 

Type Mappable No. Length (km) Area coverage (km
2
) 

Roads 2 4 0.73 

Canals 8 104 2.9 

 

  

Figure 6. Extraction of rail, roads and canals 

 

4.3 Classification Accuracy 

The overall accuracy achieved for the LULC map shows 

the capabilities of combined classification approach. 

The Kappa statistic (0.89) also shows a good 

classification agreement. Kappa values were 0.88 for 

combined method, showing that the classification 

agreement between images ranged from good to very 

good (Monserud and Leemans, 1992). A ‘From-To’ 

change analysis in the present study introduced more 

accurate results applying a combined classification 

approach, delivering greater insight into actual and 

LULC change increase in ‘urban’, ‘agriculture’, 

‘aquaculture’ and ‘industrial’ areas. The results of the 

classification accuracy assessment showed in table 

(Table 6). These results show that the extraction and 

merging of the best- classified classes from object-based 

and onscreen methods produces a LULC map with 

improved accuracy in comparison to individual object-

based or pixel based classification methods.  

4.4 Land Use / Land Cover Change 

It has been observed (Figure 7) in comparing both the 

classification output that there has been a major 

transformation from scrubland to industrial expansion 

along the coast of study area. The map also depicted the 

major transformation of aquaculture to agriculture 

during 2009-2013. A total of 61 possible LULC changes 

were detected (Table 7), of which 24 are larger than 1 

km
2
. Most of LULC changes are the result of agriculture 

intensification, industrialization and urban expansion. 

A summary of the LULC change results is 

provided in table (Table 8). Approximately 230 km
2
 

(56.9%) of the total study area (404.46 km
2
) remained 

unchanged, and 174.46 km
2
 (43.1%) changed. LULC 

classes, viz. cropland, scrubland, aquaculture and 

industry are more dynamic in nature (Table 7). Hence, 

all the classes have major contribution in 2013 LULC 

change. The study investigated that there was a 

considerable increase of cropland, industry and built-up 

vegetated area by 12.78 %, 2.16% and 1.83%, 

respectively in 2013. Simultaneously, decrease in fallow 

land, aquaculture and scrubland by 12.25%, 4.99% and 

0.69%, respectively in 2013 has also been observed 

(Table 8). It has been noticed that, ‘Aquaculture’ class 

was lost between 2009 and 2013 and mostly 

transformed into ‘cropland’ and ‘urban built-up 

vegetated’ (Table 9). It has found that majority of the 

urbanization primarily occurred in the cropland areas 

(Tian et al, 2014). ‘Industrial’ area replaced almost 8.74 

km
2
 of scrubland, cropland, fallow land and aquaculture 
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in total, which is an increase of 2.16% of TGA. The 

‘Urban’ class replaced nearly 9.29 km
2
 of the ‘cropland’ 

and ‘fallow land’ and ‘scrubland’ class which is 2.29 % 

of TGA. 

 

Table 6. Classification accuracy for 2013 

Level-1 Level-2 User's accuracy Producer's accuracy 

Built-up Compact 0.96 0.96 

Sparse 0.80 0.89 

Vegetated 0.83 0.86 

Rural 0.93 0.95 

Industry 0.92 0.95 

Agriculture Cropland 0.88 0.91 

Fallow land  0.91 0.83 

Plantation 0.89 0.91 

Aquaculture 0.95 0.96 

Wasteland Scrubland 0.80 0.84 

Wetland Wetland 0.89 0.94 

Water body Water body 0.84 0.86 

Overall accuracy 0.89 

Kappa statistic 0.88 

 

 

Figure 7. Land use / land cover map of study area (2009 and 2013)
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The classified map is showing that there was a 

substantial interclass change about 12% of TGA 

between cropland and fallow land, but it was found as 

not considerable due to unavailability of multi season 

data. The most striking findings were that the largest 

patch of aquaculture field and scrub land has been 

decreased to approximately 12 km
2 

due to industrial 

development after 2011 along the coastal track (Figure 8 

and Figure 9). 

 

Table 7. Land use / land cover change combinations and converted area 

No. ‘From – To’ Classes 
Area 

(sq.km) 
No. ‘From – To’ Classes 

Area 

(sq.km) 

1 Aquaculture to Cropland 14.19 32 Plantation  to Built-up Industries 0.04 

2 Aquaculture to Fallow land 9.44 33 Plantation  to Built-up Rural 0.13 

3 Aquaculture to Built-up Industries 0.98 34 Plantation  to Built-up Vegetated 0.15 

4 Aquaculture to Built-up Rural 0.2 35 Plantation  to Wasteland-Scrubland 0.36 

5 Aquaculture to Built-up Vegetated 0.81 36 Built-up Vegetated to Built-up Compact 0.27 

6 Aquaculture to Wasteland-Scrubland 3.02 37 Built-up Vegetated to Built-up Sparse 0.18 

7 Aquaculture to Water body 0.27 38 Wasteland Sandy to Aquaculture 0.13 

8 Aquaculture to Wetland 0.12 39 Wasteland Sandy to Fallow land 0.09 

9 Cropland to Aquaculture 2.68 40 Wasteland Sandy to Agri. Plantation 0.09 

10 Cropland to Fallow land 20.11 41 Wasteland Sandy to Built-up Industries 0.94 

11 Cropland to Agri. Plantation 2.03 42 Wasteland Sandy to Built-up Sparse 0.04 

12 Cropland to Built-up Compact 0.16 43 Wasteland Sandy to Wasteland-Scrubland 1.52 

13 Cropland to Built-up Industries 0.55 44 Wasteland Sandy to Water body 1.11 

14 Cropland to Built-up Rural 1.64 45 Wasteland Scrubland to Aquaculture 2.34 

15 Cropland to Built-up Sparse 0.27 46 Wasteland Scrubland to Plantation  0.58 

16 Cropland to Built-up Vegetated 2.2 47 Wasteland Scrubland to Built-up Compact 0.35 

17 Cropland to Wasteland-Scrubland 2.8 48 Wasteland Scrubland to Built-up Industries 5.3 

18 Cropland to Water body 0.47 49 Wasteland Scrubland to Built-up Rural 0.54 

19 Cropland to Wetland 1.23 50 Wasteland Scrubland to Built-up Sparse 0.15 

20 Fallow land to Aquaculture 3.7 51 Wasteland Scrubland to Built-up Vegetated 1.97 

21 Fallow land to Cropland 68.54 52 Wasteland Scrubland to Wasteland Sandy 0.91 

22 Fallow land to Agri. Plantation 0.98 53 Wasteland Scrubland to Water body 1.28 

23 Fallow land to Built-up Compact 0.08 54 Wasteland Scrubland to Wetland 0.13 

24 Fallow land to Built-up Industries 0.93 55 Water body to Cropland 0.87 

25 Fallow land to Built-up Rural 0.83 56 Water body to Fallow land 0.46 

26 Fallow land to Built-up Sparse 0.36 57 Water body to Wasteland-Sandy 1.32 

27 Fallow land to Built-up Vegetated 2.74 58 Water body to Wetland 4.1 

28 Fallow land to Wasteland-Scrubland 3.06 59 Wetland to Cropland 0.66 

29 Fallow land to Water body 0.2 60 Wetland to Fallow land 0.52 

30 Plantation  to Cropland 1.54 61 Wetland to Water body 0.48 

31 Plantation  to Plantation   1.25 
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Table 8. LULC change statistics for 2009 and 2013 

Level-1 

Classes 

Level-2  

Classes 

Area in sq. km Change (%) 

w.r.t TGA 
2009 2013 Change 

Built up Compact 9.12 9.97 0.86 0.21 

Sparse 4.64 5.65 1.01 0.25 

Vegetated / open area 5.57 12.99 7.42 1.83 

Rural 9.36 12.71 3.35 0.83 

Industrial 2.34 11.08 8.74 2.16 

Agriculture Crop land 125.06 176.74 51.68 12.78 

Fallow land 110.9 61.34 -49.56 -12.25 

Plantation  6.96 7.17 0.21 0.05 

Aquaculture 57.93 37.74 -20.19 -4.99 

Wasteland Scrubland 35.51 32.71 -2.8 -0.69 

Sandy area 6.41 4.7 -1.71 -0.42 

Wetland Wetland 2.46 6.39 3.94 0.97 

Water body Water body 28.21 25.27 -2.95 -0.73 

 

Table 9. LULC change matrix (2009-2013) 

L
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Land Use / Land Cover- 2013 

LU 

Codes 
1 2 3 4 5 6 7 8 9 13 15 16 17 

2009 

Total 

1 9.12                         9.12 

2   4.64                       4.64 

3 0.27 0.18 5.11                     5.57 

4       9.36                   9.36 

5         2.34                 2.34 

6 0.16 0.27 2.2 1.64 0.55 90.92 20.11 2.03 2.68 2.8   1.23 0.47 125 

7 0.08 0.36 2.74 0.83 0.93 68.54 29.48 0.98 3.7 3.06     0.2 111 

8     0.15 0.13 0.04 1.54 1.25 3.48   0.36       6.96 

9     0.81 0.2 0.98 14.19 9.44   28.89 3.02   0.12 0.27 57.9 

13 0.35 0.15 1.97 0.54 5.3     0.58 2.34 21.97 0.91 0.13 1.28 35.5 

15   0.04     0.94 0.01 0.09 0.09 0.13 1.52 2.47 0.01 1.11 6.41 

16           0.66 0.52         0.8 0.48 2.46 

17           0.87 0.46       1.32 4.1 21.46 28.2 

2013 

Total 
9.97 5.65 12.99 12.70 11.10 176.70 61.34 7.17 37.70 32.70 4.70 6.39 25.30 404 
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Figure 8 Ground validation of (a) conversion of cropland to urban built-up, (b) conversion of 

scrubland to industry, (c) conversion of agriculture land to aquaculture, (d) aquaculture practices, 

(e) abandoned aqua ponds and (f) chocking of river bed due to encroachment of urban built-up. 
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Figure 9. Change in LULC 

An objective of the study was to establish a 

method for mapping LULC that can be applied at large 

scale mapping. We were interested to develop a 

methodology to classify high resolution satellite image 

with maximum accuracy. We performed a combined 

object based and onscreen classification techniques 

together. The combined classification approach has the 

advantage that only classes with the highest 

classification accuracies contribute to the final LULC 

map, resulting in a higher overall classification accuracy 

(Gutiérrez et al, 2012). Other authors have also obtained 

higher classification accuracies when applying a 

combination of classification methods, including 

Bhaskaran, Paramananda and Ramnarayan (2010). 

Minimal errors introduced during classification of 

imagery can be overcome by applying query based 

onscreen rectification. We were used the same database 

to update the change using satellite image of 2013, 

hence, it did not require further topological correction 

and simultaneously it reduces the classification error . 

5 CONCLUSIONS 

Object and onscreen based classification present a 

promising mode to improve classification of remotely 

sensed images. Discrimination of LULC classes with 

different spectral, textural, and topographical 

characteristics using combined object-based and 

onscreen classification approaches may lead to advance 

workflows for classifying past, present and future 

LULC. This technique is very useful for a complex 

LULC, where LULC class change rate is very high. As 

the accuracy for the present study is very high, so we 

recommend this classification approach for region with 

different characteristics. However, significance research 

is still required to reduce the subjectivity and human 

bias of onscreen rectification procedure.  

Operational GIS projects related to LULC needs 

highly accurate datasets on timely basis, which can 

further be integrated with other datasets during decision 

making processes. The classification approaches in this 

study have produced highly accurate datasets which can 

be maintained and updated within GIS environment. 

Furthermore, it will be beneficial for researchers and 

decision makers to execute the development plan for 

certain LULC. 
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ABBREVIATIONS 

GIS: Geographical Information System; GPS: Global 

Positioning System; IRS: Indian Remote Sensing Satellite; 

ISRO: Indian Space Research Organization; LU: Land Use; 

LULC: Land Use/ Land Cover; LULCC: Land Use/ Land 

Cover Change; MRFs: Markov Random Fields; NRSC: 

National Remote Sensing Centre; R2: RESOURCESAT-2, 

TGA: Total Geographical Area; TOA: Top of Atmosphere; 

WGS 84; World Geodetic Survey 1984. 

REFERENCES  

Aksoy S., Akҫay H. G. and Wassenaar T., 2010. Automatic 

Mapping of Linear Woody Vegetation Features in 

Agricultural Landscapes Using Very High Resolution 

Imagery. IEEE Transactions on Geoscience and Remote 

Sensing, 48 (1), 511–522.  

Baltsavias E. P., 2004. Object Extraction and Revision by 

Image Analysis Using Existing Geodata and 

Knowledge: Current Status and Steps Towards 

Operational Systems. ISPRS Journal of  

Photogrammetry and Remote Sensing, 58 (3–4), 129–

151.  

Benz U. C., Hofmann P., Willhauck G., Lingenfelder I. and 

Heynen M., 2004. Multi-Resolution, Object-Oriented 

Fuzzy Analysis of Remote Sensing Data for GIS-Ready 

Information. ISPRS Journal of Photogrammetry and 

Remote Sensing, 58 (3–4), 239–258. doi:10.1016/j. 

isprsjprs.2003.10.002. 

Bhaskaran S., Paramananda S. and Ramnarayan M., 2010. Per-

pixel and object oriented classification methods for 

mapping urban features using IKONOS satellite data. 

Applied Geography, 30(4), 650-665. 

Bhuvan, NRSC, ISRO [National Remote Sensing Centre, 

Indian Space Research Organisation] 2016, Hyderabad, 

India.  
Blaschke, T., 2010. Object based image analysis for remote 

sensing. ISPRS Journal of Photogrammetry and Remote 

Sensing, 65, 2-16. 

Chen D. and Stow D., 2003. Strategies for Integrating 

Information from Multiple Spatial Resolutions into 

Land-Use/Land-Cover Classification Routines. 

Photogrammetric Engineering and Remote sensing, 69 

(11), 1279-1287. 

Congalton, R.G. 1991. A review of assessing the accuracy of 

classifications of remotely sensed data, Rentote Sensing 

of Environment, 37, 35-46. 

Definiens A. G., 2010. Definiens developer v7. 

http://www.definiens.com/, 27th October, 2010. 

eCognition Developer 9.0, 2015. Trimble.   

Fuller R. M., Smith G. M. and Devereux B. J., 2003. The 

characterisation and measurement of land cover change 

through remote sensing: problems in operational 

applications. International Journal of Applied Earth 

Observations and Geoinformation, 4(3), 243-253. 

Gutiérrez J. A., Seijmonsbergen A. C. and Duivenvoorden, J. 

F., 2012. Optimizing land cover classification accuracy 

for change detection, a combined pixel-based and 

object-based approach in a mountainous area in Mexico, 

Applied Geography, 34, 29-37. 

Im J., Jensen J. R. and Tullis, J. A., 2008. Object-based change 

detection using correlation image analysis and image 

segmentation. International Journal of Remote Sensing, 

29, 399-423. 

Jensen J. R., 2004. Digital change detection. Introductory 

digital image processing: A remote sensing perspective, 

467– 494. New Jersey: Prentice-Hall. 

Lu D. and Weng, Q., 2007. Survey of Image Classification 

Methods and Techniques for Improving Classification 

Performance. International Journal of Remote Sensing, 

28, 823-870.  

Monserud R. A. and Leemans, R., 1992. Comparing global 

vegetation maps with the Kappa statistic. Ecological 

Modelling, 62: 275-293. 

Moser G., Serpico, S.B. and Benediktsson, J.A., 2013. Land-

Cover Mapping by Markov Modeling of Spatio-

contextual Information in Very-High-Resolution 

Remote Sensing Images. Proceedings of the IEEE, 101, 

631-651.  

Myint S.W., Gober P., Brazel A., Grossman-Clarke, S. and 

Weng, Q., 2011. Per-pixel vs. Object-based 

Classification of Urban Land Cover Extraction using 

High Spatial Resolution Imagery. Remote Sensing of 

Environment, 115, 1145-1161.  

NRSC, [National Remote Sensing Centre] 2011. Land Use 

Land Cover Atlas of India (Based on Multi-Temporal 

Satellite Data of 2005-06), NRSC, ISRO [Indian Space 

Research Organisation], Hyderabad, 1-128. 

Pal N.R. and Bhandari, D., 1992. On Object Background 

Classification. International Journal of Systems Science, 

23, 1903-1920.  

Robertson, L. D. and King, D. J., 2011. Comparison of pixel- 

and object-based classification in land cover change 

mapping. International Journal of Remote Sensing, 

32(6), 1505-1529. 

Roy P.S., Roy A., Joshi P.K et al., 2015. Development of 

Decadal (1985-1995-2005) Land Use and Land Cover 

Database for India. Remote Sensing, 7, 2401-2430. 

Saxena, M.R., Ganguly, K., Shyam Sunder, B., Padma Rani, 

G., Rao A. and Ravi Shankar, G. 2014. Monitoring Land 

Use with Reference to Aquaculture in Chinna Cherukuru 

Village of Nellore District, Andhra Pradesh, India – A 

Remote Sensing and GIS Based Approach, Proceeding 

of the ISPRS, XL-8, 927-931. 

Stuckens, J., Coppin, P.R. and Bauer, M.E., 2000. Integrating 

Contextual Information with Per-pixel Classification for 

Improved Land Cover Classification. Remote Sensing of 

Environment 71, 282-296.  

Thoonen G., Hufkens K., Borre J.V., Spanhove T. and 

Scheunders, P., 2012.  Accuracy Assessment of 

Contextual Classification Results for Vegetation 

Mapping. International Journal of Applied Earth 

Observation and Geoinformation, 15, 7-15.  

Tian H., Banger K., Bo, T. and Dadhwal, V. K., 2014. History 

of land use in India during 1880-2010: Large-scale land 

transformation reconstructed from satellite data and 

historical archives. Global and Planetary Change, 121, 

78-88.  

Tso B.C.K. and Mather P.M., 1999. Classification of 

Multisource Remote Sensing Imagery using a Genetic 

Algorithm and Markov Random fields. IEEE 

Transactions on Geoscience and Remote Sensing, 37, 

1255-1260.  

Wang L., Sousa, W.P. and Gong P., 2004. Integration of 

Object-based and Pixel-based Classification for 

Mapping Mangroves with IKONOS Imagery. 

International Journal of Remote Sensing, 25, 5655-

5668. 

Yuan F., Sawaya K. E., Loeffelholz B. C. and Bauer M. E., 

2005. Land cover classification and change analysis of 

the Twin Cities (Minnesota) Metropolitan Area by 

multi-temporal Landsat remote sensing. Remote Sensing 

of Environment, 98(2), 317-328. 

http://ieeexplore.ieee.org/document/5256249/
http://ieeexplore.ieee.org/document/5256249/
http://ieeexplore.ieee.org/document/5256249/
http://ieeexplore.ieee.org/document/5256249/
http://ieeexplore.ieee.org/document/5256249/
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000546
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0924271603000601
http://www.sciencedirect.com/science/article/pii/S0143622810000196
http://www.sciencedirect.com/science/article/pii/S0143622810000196
http://www.sciencedirect.com/science/article/pii/S0143622810000196
http://www.sciencedirect.com/science/article/pii/S0143622810000196
http://bhuvan.nrsc.gov.in/map/bhuvan/bhuvan2d.php.%20last%20accessed%203rd%20March,%202016
http://bhuvan.nrsc.gov.in/map/bhuvan/bhuvan2d.php.%20last%20accessed%203rd%20March,%202016
http://bhuvan.nrsc.gov.in/map/bhuvan/bhuvan2d.php.%20last%20accessed%203rd%20March,%202016
http://www.sciencedirect.com/science/article/pii/S0924271609000884
http://www.sciencedirect.com/science/article/pii/S0924271609000884
http://www.sciencedirect.com/science/article/pii/S0924271609000884
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.2848&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.2848&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.2848&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.2848&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.2848&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/003442579190048B
http://www.sciencedirect.com/science/article/pii/003442579190048B
http://www.sciencedirect.com/science/article/pii/003442579190048B
http://www.definiens.com/
http://www.definiens.com/
http://www.ecognition.com/suite/ecognition-developer
https://www.scienceopen.com/document?vid=366d1092-3356-4178-84b2-98d4cbc5ecdc
https://www.scienceopen.com/document?vid=366d1092-3356-4178-84b2-98d4cbc5ecdc
https://www.scienceopen.com/document?vid=366d1092-3356-4178-84b2-98d4cbc5ecdc
https://www.scienceopen.com/document?vid=366d1092-3356-4178-84b2-98d4cbc5ecdc
https://www.scienceopen.com/document?vid=366d1092-3356-4178-84b2-98d4cbc5ecdc
http://www.sciencedirect.com/science/article/pii/S0143622811001871
http://www.sciencedirect.com/science/article/pii/S0143622811001871
http://www.sciencedirect.com/science/article/pii/S0143622811001871
http://www.sciencedirect.com/science/article/pii/S0143622811001871
http://www.sciencedirect.com/science/article/pii/S0143622811001871
http://www.tandfonline.com/doi/abs/10.1080/01431160601075582
http://www.tandfonline.com/doi/abs/10.1080/01431160601075582
http://www.tandfonline.com/doi/abs/10.1080/01431160601075582
http://www.tandfonline.com/doi/abs/10.1080/01431160601075582
http://www.osti.gov/scitech/biblio/5166368
http://www.osti.gov/scitech/biblio/5166368
http://www.osti.gov/scitech/biblio/5166368
http://www.tandfonline.com/doi/pdf/10.1080/01431160600746456
http://www.tandfonline.com/doi/pdf/10.1080/01431160600746456
http://www.tandfonline.com/doi/pdf/10.1080/01431160600746456
http://www.tandfonline.com/doi/pdf/10.1080/01431160600746456
http://www.sciencedirect.com/science/article/pii/030438009290003W
http://www.sciencedirect.com/science/article/pii/030438009290003W
http://www.sciencedirect.com/science/article/pii/030438009290003W
http://ieeexplore.ieee.org/document/6304904/
http://ieeexplore.ieee.org/document/6304904/
http://ieeexplore.ieee.org/document/6304904/
http://ieeexplore.ieee.org/document/6304904/
http://ieeexplore.ieee.org/document/6304904/
http://www.sciencedirect.com/science/article/pii/S0034425711000034
http://www.sciencedirect.com/science/article/pii/S0034425711000034
http://www.sciencedirect.com/science/article/pii/S0034425711000034
http://www.sciencedirect.com/science/article/pii/S0034425711000034
http://www.sciencedirect.com/science/article/pii/S0034425711000034
http://www.nrsc.gov.in/
http://www.nrsc.gov.in/
http://www.nrsc.gov.in/
http://www.nrsc.gov.in/
http://www.tandfonline.com/doi/abs/10.1080/00207729208949429
http://www.tandfonline.com/doi/abs/10.1080/00207729208949429
http://www.tandfonline.com/doi/abs/10.1080/00207729208949429
http://www.tandfonline.com/doi/abs/10.1080/01431160903571791
http://www.tandfonline.com/doi/abs/10.1080/01431160903571791
http://www.tandfonline.com/doi/abs/10.1080/01431160903571791
http://www.tandfonline.com/doi/abs/10.1080/01431160903571791
http://www.mdpi.com/2072-4292/7/3/2401
http://www.mdpi.com/2072-4292/7/3/2401
http://www.mdpi.com/2072-4292/7/3/2401
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/927/2014/isprsarchives-XL-8-927-2014.pdf
http://www.sciencedirect.com/science/article/pii/S0034425799000838
http://www.sciencedirect.com/science/article/pii/S0034425799000838
http://www.sciencedirect.com/science/article/pii/S0034425799000838
http://www.sciencedirect.com/science/article/pii/S0034425799000838
http://www.sciencedirect.com/science/article/pii/S0303243411000766
http://www.sciencedirect.com/science/article/pii/S0303243411000766
http://www.sciencedirect.com/science/article/pii/S0303243411000766
http://www.sciencedirect.com/science/article/pii/S0303243411000766
http://www.sciencedirect.com/science/article/pii/S0303243411000766
http://www.sciencedirect.com/science/article/pii/S0921818114001283
http://www.sciencedirect.com/science/article/pii/S0921818114001283
http://www.sciencedirect.com/science/article/pii/S0921818114001283
http://www.sciencedirect.com/science/article/pii/S0921818114001283
http://www.sciencedirect.com/science/article/pii/S0921818114001283
http://ieeexplore.ieee.org/document/763284/
http://ieeexplore.ieee.org/document/763284/
http://ieeexplore.ieee.org/document/763284/
http://ieeexplore.ieee.org/document/763284/
http://ieeexplore.ieee.org/document/763284/
http://www.tandfonline.com/doi/abs/10.1080/014311602331291215
http://www.tandfonline.com/doi/abs/10.1080/014311602331291215
http://www.tandfonline.com/doi/abs/10.1080/014311602331291215
http://www.tandfonline.com/doi/abs/10.1080/014311602331291215
http://www.tandfonline.com/doi/abs/10.1080/014311602331291215
http://www.sciencedirect.com/science/article/pii/S0034425705002646
http://www.sciencedirect.com/science/article/pii/S0034425705002646
http://www.sciencedirect.com/science/article/pii/S0034425705002646
http://www.sciencedirect.com/science/article/pii/S0034425705002646
http://www.sciencedirect.com/science/article/pii/S0034425705002646


Remote Sensing of Land, 1(1), 3-17, 2016.             K. Ganguly, et al. 

17 
 

Yuan J. Y., D. L. Wang. and  R. X. Li., 2014. Remote Sensing 

Image Segmentation by Combining Spectral and 

Texture Features. IEEE Transactions on Geoscience and 

Remote Sensing, 52 (1), 16–24.  

Zhang Q., Huang, X. and Zhang L., 2013. An Energy-Driven 

Total Variation Model for Segmentation and 

Classification of High Spatial Resolution Remote-

Sensing Imagery. IEEE Geoscience and Remote Sensing 

Letters, 10 (1), 125–129.  

******* 

 

http://ieeexplore.ieee.org/document/6450091/
http://ieeexplore.ieee.org/document/6450091/
http://ieeexplore.ieee.org/document/6450091/
http://ieeexplore.ieee.org/document/6450091/
http://ieeexplore.ieee.org/document/6194994/
http://ieeexplore.ieee.org/document/6194994/
http://ieeexplore.ieee.org/document/6194994/
http://ieeexplore.ieee.org/document/6194994/
http://ieeexplore.ieee.org/document/6194994/

	1 INTRODUCTION
	2   STUDY AREA
	3 MATERIALS AND METHODS
	3.1 Data Processing
	3.2 Ground Validation
	3.3 Image Classification
	3.4 Segmentation and Overlay
	3.5 Change Detection
	3.6 Classification and Change Detection Accuracy Assessment

	4 RESULTS AND DISCUSSIONS
	4.1 Segmentation Accuracy
	4.2 Modification and Extraction of Sub-Classes
	4.3 Classification Accuracy
	4.4 Land Use / Land Cover Change

	5 CONCLUSIONS
	CONFLICT OF INTEREST
	ABBREVIATIONS
	REFERENCES

