5 (2021), 2, 45-55

Hydrospatial Analysis

2582-2969

Characterization and Quantification of Meteorological Drought in the Oued El-Abid Watershed, Central High Atlas, Morocco (1980-2019)

Elhoucein LAYATI 3 , Abdellah Ouigmane 1 , Abdelghani QADEM 2 , Mohamed elghachi 3

1.Team of Agro-Industrial and Environmental Processes/Team of Applied Spectro-Chemometry and Environment, Sultan Moulay Slimane University, Beni Mellal, Morocco.

2.Laboratory Dynamics of Landscapes, Risks and Heritage, Sultan Moulay Slimane University, Béni Mellal, Morocco.

3.Laboratory of Landscape Dynamics, Risks and Heritage, Sultan Moulay Slimane University, Beni Mellal, Morocco.

Mr.Elhoucein LAYATI*

*.Laboratory of Landscape dynamics, Risks and Heritage, University of Sultan of Moulay Slimane, Beni Mellal, Morocco

Dr.Pramodkumar Hire 1

1.Department of Geography, HPT Arts and RYK Science College, Nashik - 422 005.

11-08-2021
13-06-2021
18-07-2021
26-07-2021

Graphical Abstract

Highlights

  1. The Oued El-Abid watershed was affected by meteorological droughts during the period 1980-2019.
  2. The methodology adopted in this paper was based on statistical indices (DM, RI and SPI).
  3. The remarkable drought years in the watershed of Oued El-Abid are 1981-1983-1990-1994-1998-2001-2005-2017 and 2019.
  4. The extreme meteorological drought was observed in 1981.

Abstract

The present study is focused on analysis of rainfall in the Oued El-Abid watershed, which is characterized by an important potential in water supply of the Bin El Ouidane dam and the recharging groundwater of the plains downstream. The aim of the present research is to characterize the meteorological drought in the Oued El-Abid watershed, located in the Beni Mellal-Khenifra region (Central High Atlas, Morocco). The study focused on the analysis of the meteorological drought detection indices such as the deviation from the mean (DM), the rainfall index (RI) and the standardized precipitation index (SPI) based on annual precipitation for the three stations (Tilouguit, Ait Ouchen and Tizi N'Isli) generally experienced alternating periods of surplus and deficit. The results of these indices allowed us to determine the most remarkable and common drought years are: 1981, 1983, 1990, 1998, 2001, 2005, 2017 and 2019. This study is helpful for water resource managers to make decisions and develop tools for adaptation and mitigation of climate change impacts.

Keywords

Meteorological Drought , Oued El-Abid watershed , Statistical methods , Water Resources

1 . INTRODUCTION

In recent years, the problems related to climate change have become major themes to deal with Morocco suffers significant rainfall deficits, resulting in severe drought (Sebbar et al., 2011). Drought is a transient climatological anomaly that affects the region socially, economically, and ecologically in which water availability is lower than that of a usual geographic area (Romanowicz et al., 2016; Van Lanen et al., 2017; Melese et al., 2018). In other words, a drought is a disaster associated with a long-term lack of rainfall resulting in a temporary loss or shortage of water (Vogt and Somma, 2000; Wilhite et al., 1985; IPCC, 2014). Furthermore, the available water resources are not sufficient to meet the average demand in the long term. Drought is a very complex phenomenon to define (OMM, 2012). Usually, it is characterized by a temporary water shortage over a time (Pereira et al., 2002). There are four different groups of droughts (meteorological, agriculture, hydrology and socio-economic) (Svoboda et al., 2002; Mishra and Singh, 2010; Spinoni et al., 2014). Drought assessments include estimates of their properties (intensity, duration, spatial extent, etc.). It is therefore an important factor in the design of hydroelectric projects and in the management and planning of water resources (Sarailidis, 2016).

Periods of drought are very common in all countries of the world, especially countries in arid and semi-arid regions. Morocco has experienced the longest dry spell in its contemporary history (DMN, 1995). In recent decades, the Oued Oum Er-Rabia watershed has experienced significant rainfall deficits resulting in very intense droughts (Jouilil, 2013). These droughts can be quantified and characterized using several indices of which the best known are presented in table 1.

The main objective of the study is to characterize the meteorological drought of three stations (Ait Ouchen, Tilouguit and Tizi N'Isli) using statistical methods (climatic indices).

2 . DATA AND METHODS

2.1 Study Area

The Oued El-Abid watershed is located in the Beni Mellal-Khenifra region (Central High Calcareous Atlas, Morocco).  It extends between (5° 13' 38'' and 6°38'35'' West) longitude and between (31°42'31'' and 32°37'22'' North) latitude. The surface area of the watershed is 6405 km2 at Bin-El-Ouidane lake. The climate is characterized by two contrasting seasons, 1) the hot and dry summer season with high temperatures around 41°C during July and August and the rainy and 2) colder winter season with temperatures around -6°C in January/February. The study area extends over several rural communes such as (Taguelft, Ouaouizeth, Tilouguit, Anergui, Zaouit Ahensal, Imilchil, Anefgou, Tizi Nisli, Aghbala, etc.) (Figure 1). The Oued El-Abid is originate in the jbel Masker (3277 m) and flows from East to West. The basin is elongated, extends in the heart of the High Atlas limestone, bounded on the East and South by a line of high ridges above 3000 m, the highest point of the basin is the jbel Azourki (3690 m) (Leveque, 1952). This basin is drained by two main rivers: Oued Ahensal and Oued El-Abid, the two principal sources of water that feed the dam of Bin El-Ouidane. The dam has a very important role in the irrigation of the agricultural perimeter of Beni Moussa and Tassawt Aval (Irrigation of more than 69500 ha of the plain of Tadla, perimeter of Beni Moussa, on the left bank of the wadi Oum Er Rbia), the supply of drinking water, the production of electricity (2/3 of the national production) and the recharging of aquifers of Tadla downstream (Figure 1), (Ahbari et al., 2017; Ouakhir and Elghachi, 2018). The basin upstream of the Bin El-Ouidane dam lake consists, essentially, of the Dogger and Lias terrains represented by limestone and marlstone formations, Cretaceous terrains represented by marlstone and sandstone formations (Dahani and Aounini, 2013).

 

Figure 1. Study Area: Oued El-Abid watershed

 

2.2 Data

Rainfall data were collected from the Oum Er Rbia River Basin Agency (ABHOER). Tables 2, 3 and Figure 1 present the rainfall characteristics of the selected stations. The database consists of annual rainfall measurements from three rainfall gauging stations Tilouguit, Ait Ouchen and Tizi N'Isli. The choice of these stations is determined by the availability of climate data series. Collected data were used to characterize the meteorological drought in the Oued EL-Abid watershed for the period between 1980 and 2019 (Table 3). To have the quality of the data, the coefficient of determination of the correlation line R² was determined (Elghachi, 2007; Qadem, 2015). When we have an R² greater than 70%, the correlation is considered satisfactory, and an R² greater than 80% the correlation is considered good, then to check the homogeneity of rainfall data, the method of simple (Meylan et al., 2008) and double accumulations were used (Musy and Higy, 2003; Meylan et al., 2008). All stations have an R² exceeding 80% with acceptable significance (Figure 2 and Table 4).

 

Table1. Summary of key drought indicators and indices

Indicators

Parameters input

Source

Meteorology

 

Standardized Precipitation Index (SPI)

 

P

Guttman (1999); Bergaoui  et al. (2001); Khan et al. (2008); WMO (2012); Hadria et al. (2019); El Orfi et al. (2020)

Rainfall Index (RI)

P

Rognon (1997)

Deviation from the Mean (DM)

P

Yacoubi and Hanchane (1997); Elbouqdaoui et al. (2006)

Deciles

P

Gibbs and Maher (1967)

Effective Drought Index (EDI)

P

Byun and Wilhite (1999)

Hydrology

Stream Drought Index (SDI)

Q

Nalbantis and Tsakiris (2009)

Standard Stream Flow Index (SSFI)

Q

Modarres (2007); Telesca et al. (2012)

Normalized Hydrological Index (NHI)

Q

Sharma and Panu (2010)

Agriculture

Normalized Differential Vegetation Index (NDVI)

Sat

Huete et al. (2002); Ji and  Peters (2003).

Vegetation Condition Index (VCI)

Sat

Kogan (1995); Liu and Kogan (1996); Zagade et al. (2018)

Temperature Condition Index (TCI)

Sat

Kogan (1995); Ali et al. (2019); Zagade et al. (2018); Owrangi et al. (2011)

Vegetation Condition Index (VCI)

Sat

Liu and Kogan (1996); Ali et al. (2019); Zagade et al. (2018)

P = Precipitation, Sat = Satellite data and Q = Flow

 

 

Table 2. Rainfall characteristics

Stations

Lambert coordinates

 

Chronicle

 

X

Y

Z

 

Tilouguit

422 670

158 500

1100

1980-2019

Ait Ouchen

434 147

185 125

939

1976-2019

Tizi N’Isli

432 300

139 600

1350

1976-2019

 

 

Table 3. Chronogram of rainfall data

 

Table 4. Double accumulation test for rainfall stations (1980-2019)

Rain-gauge stations (x)

The correlated stations (y)

R2

Tilouguit

Tizi N'Isly

99.65

Tizi N'Isly

Ait Ouchen

99.56

Ait Ouchen

Tizi N'Isly

99.56

 

 

Figure 2. Simple accumulation method for rainfall stations (1980-2019)

 

2.3 Calculation of Climate Index

The calculation of drought monitoring indicators from meteorological data is based on the calculation of statistical climate indices: Deviation from the mean (DM), Rainfall Index (RI) and Standardized Precipitation Index (SPI):

2.3.1 Deviation from the Mean (DM)

This is widely used index for estimating the rainfall deficit on a yearly basis. It is defined as the difference between the annual precipitation height (Ph) and the average annual precipitation height (Pa) (Equation 1) (Yacoubi and Hanchane, 1997; Elbouqdaoui, et al., 2006; Daki et al., 2015).

\(DM=(Ph-Pa) \)                 (1)

The year is wet when the DM is positive, in contrast to the DM is dry, i.e. a deficit (dry) year when the rainfall is below average and a surplus (wet) year when the average is exceeded. This index has been used by agro-meteorologists to visualize and determine the number of deficit years and their succession.

2.3.2 Rainfall Index (RI)

The rainfall index (RI) is the ratio (Equation 2) of the annual precipitation height (Ph) to the average rainfall (Pa).

\(RI = {Ph \over Pa}\)                       (2)

A year is classified as dry if the RI is less than 1 (Rognon, 1997).

2.3.3 Standardized Precipitation Index (SPI)

The standardized precipitation index (SPI) is a very simple index created by McKee et al. (1993; 1995) to characterize precipitation deficits for a given period (Stour, 2009). This formula (Equation 3) has been implemented in many hydro-climatic research conducted for some regions of the world (Bergaoui et al., 2001Wu et al., 2006Khan et al., 2008Naresh et al., 2009Ghenim et al., 2011Jouilil et al., 2013Soro et al., 2014Boudad et al., 2015Nouaceur et al., 2015Svoboda and  Fuchs,  2016, Parvaze et al., 2018; Cheikh et al., 2019; Hadria et al., 2019; El Orfi et al., 2020).

\(SPI = {(Pi-Pa) \over S}\)                    (3)

where, Pi is precipitation of year i (mm); Pa is average precipitation (mm) and S is standard deviation.

The National Drought Mitigation Center (NDMC) in the United States has been classified as drought based the precipitation deficiency (Łabędzi, 2004). The ranges of SPI values for identifying precipitation anomalies are given in table 5.

 

Table 5: Classification of drought sequences according to SPI

SPI classes

Characteristics

> 2.0

Extremely wet

1.5 to 1.99

Very  wet

1.0 to 1.49

Moderately wet

-0.99 to 0.99

Normal

-1 to -1.49

Moderately dry

-1.5 to -1.99

Very dry

-2.0 <

Extremely dry

 

 

3 . RESULTS AND DISCUSSION

To identify and characterize the meteorological drought in the Oued El-Abid watershed, three indices (DM, RI and SPI) were calculated.

3.1 Deviation from the Mean (DM)

From the graphical representation of the deviation from the annual average, we notice that the Oued El-Abid watershed shows fluctuations in wet and dry periods (Figure 3).

The results show the succession between deficit and surplus years. The longest period of drought which affect the majority of the Oued El-Abid watershed from 1980-81 to 2000-2001, with some intercalations of wet phases of durations ranging from 1 to 4 years.

The rainfall series of the three stations in study area is given in table 6.

 

Table 6. Dry and wet period characteristics (1980-2019)

Stations

Ait Ouchen

Tilouguit

Tizi N'Isli

Average

Number of dry sequences

11

11

11

11

Duration (years)

18

21

20

19

Cumulative deficit (mm)

5806.5

6006.4

6532.2

6115.03

Average intensity (mm)

293.96

286.02

326.61

302.2

Frequency of dry years in %.

45

52.5

50

49,17

Number of wet sequences

11

11

10

10,67

Duration (years)

22

19

20

20

Cumulative surplus (mm)

10589.6

9160.2

10892.3

10214.03

Average intensity (mm)

501.05

485.89

544.6

510.51

Frequency of wet years (%)

55

47,5

50

50,83

 

 

  • The calculation of the deviation from the average at the basin level (Table 6) showed the major rainfall trends that are characterized by periods with a dry trend and periods with a wet trend. Then the most surplus (wet) years common correspond to the years 1996 and 2010 and the most deficient (dry) years compared to the average which are 1981, 1983, 1984,1986, 1990,1994, 1998,1999, 2000, 2001,2005, 2007, 2015, 2017 and 2019.
  • The average intensity of precipitation at scale of the basin shows an average deficit of the series studied of 302.20 mm for the dry period and an average surplus of 510.51 mm for the wet period.

 

Figure 3: Deviation from the average annual rainfall (1980-2019)

 

3.2 Rainfall Index (RI)

In order to analyze the precipitation in the watershed, calculating of RI index three studied stations were carried out. The results similar to those obtained by the index of deviation from the mean (DM) are shown (Figure 4).

 

Figure 4. Rainfall index (1980-2019)

 

Table 7 shows a succession of surplus and deficit periods during the 39-years in the Oued El-Abid watershed.

  • The common drought years of three stations are: 1981, 1983, 1984, 1986, 1990, 1994, 1998, 1999, 2000, 2001, 2005, 2007, 2015, 2017 and 2019.
  • The surplus years are: 1985, 1989, 1991, 1996, 1997, 2002, 2003, 2004, 2006, 2008, 2009, 2010, 2011, 2012 and 2018.
  • The wettest year was 1996 in addition to the period between 2008 and 2012.

 

Table 7. Dry and wet years by rainfall index (1980-2019)

 Years

Ait Ouchen

Tilouguit

Tizi N'Isli

1980

W

W

D

1981

D

D

D

1982

W

D

W

1983

D

D

D

1984

D

D

D

1985

W

W

W

1986

D

D

D

1987

W

S

W

1988

W

W

S

1989

W

W

W

1990

D

D

D

1991

W

W

W

1992

D

D

W

1993

D

D

W

1994

D

D

D

1995

D

D

W

1996

W

W

W

1997

W

W

W

1998

D

D

D

1999

D

D

D

2000

D

D

D

2001

D

D

D

2002

W

W

W

2003

W

W

W

2004

W

W

W

2005

D

D

D

2006

W

W

W

2007

D

D

D

2008

W

W

W

2009

W

W

W

2010

W

W

W

2011

W

W

W

2012

W

W

W

2013

W

D

D

2014

W

W

D

2015

D

D

D

2016

W

W

D

2017

D

D

D

2018

W

W

W

2019

D

D

D

W : Wet; D : Dry

 

3.3 Standardized Precipitation Index (SPI)

The characterization of the drought by the SPI, confirms the recurrent character of the phenomenon determined by the drought indices DM and RI. The standard precipitation drought index allows us to very precisely define the duration and intensity of a drought (Pita, 2000). The analysis of the results of this index at the level of three stations (Figure 5) allowed us to confirm that the observation period (1980-2019) is characterized by an alternation of dry and wet years.

 

Figure 5. Evolution of standardized precipitation index (1980-2019)

 

  • The calculation of the SPI shows the existence of remarkable dry years of 1981, 1983, 1990, 1994, 1998, 2001, 2005, 2017 and 2019 (Figure 5). This translates into the existence of 7 drought sequences with a peak of about -1.59, -1.63 and -1.54, respectively in the stations Tizi N'Isli, Ait Ouchen and Tilouguit during the year 1981.
  • Periods with a wet trend affecting the entire basin: 1996 and 2010.

By following the evolution of the SPI index during the period of study, we found that in terms of frequency this method indicates an average of 70% of normal years, 13% of wet years and 17% of dry years (Table 8), the deficit periods are more persistent in space-time than surplus periods.

 

Table 8. Frequency (%) of the drought index

 

 

Rain- gauge stations 

Wet period

Normal period

Dry period

Extremely wet (>2.0)

Very  wet  (1.5 to 1.99)

Moderately wet
(1 to 1.49)

Total frequency (%)

Normal   (-0.99 to       +0.99)

Moderately dry (-1 to -1.49)

Very dry (-1.5 to -1.99)

Extremely dry (< -2)

Total frequency (%)

Ait Ouchen

5

2.5

5

12.5

67.5

17.5

2.5

0

20

Tilouguit

2.5

2.5

12.5

17.5

65

12.5

5

0

17.5

Tizi N'Isli

2.5

0

7.5

10

77.5

10

2.5

0

12.5

 

4 . CONCLUSION

Deviation from the annual average, rainfall index and SPI were used to analyze the meteorological drought in the Oued El Abid watershed based on the data recorded at three rain-gauging stations: Tizi N'Isli, Tilouguit and Ait Ouchen. This basin has been affected by several dry years during the period 1980 to 2019.

  • The years 1981, 1983, 1990, 1994, 1998, 2001, 2005, 2017 and 2019 are characterized by a remarkable drought in the study area.
  • The wet situation in the dam hydro-system is observed during three years 1996, 2009 and 2010.

These climatic variations are likely to have effects on the evolution of the inflow of the Bin El-Ouidane dam, so it is essential to propose adaptation strategies to this phenomenon related to climate change.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Acknowledgements

The authors wish to thank the hydraulic basin agency of Oum Er-Rabia for providing data used in this paper

Abbreviations

DM: Deviation from the Mean; WMO: World Meteorological Organization; RI: Rainfall Index; SPI: Standardized Precipitation Index.

References

3.

Bergaoui, M. and Alouini, A., 2001. Caractérisation de la sécheresse météorologique et hydrologique: cas du bassin versant deSiliana en Tunisie. Sécheresse 12(4), 205-213

4.

Boudad, B., Sahbia, H., Manssourib, I., Manssouria, T. and Boudebbouz, B., 2015. Prédiction de la sécheresse dans le bassin d’Inaouène en utilisant les réseaux de neurones et la régression linéaire multiple. Journal of SAWIS, 01, 13-18.

6.

Cheikh,  F., Daouda, B.A. and Baba, S. Y., 2019. Quantification de la sécheresse météorologique par des indices standardisés de précipitations dans la vallée du fleuve Sénégal de 1980 à 2017. Revue de géographie du laboratoire Leïdi, 108-122.

7.

Dahani, M. and  Aounini, F.E., 2013. Evaluation de la qualité du produit NDVI-MODIS pour cartographier la végétation (Application au niveau du bassin versant d’Oued El Abid). Mémoire de Licence Sciences et Techniques. Géomatique et Aménagement du Territoire. Université Sultan Moulay Slimane, Faculté des Sciences et Techniques de Béni Mellal, Département des Sciences de la Terre, 15

8.

Daki, Y., Lachgar, R., and Zahour, G., 2015. Étude Hydroclimatique du bassin du haut Oum Er Rbia. International Journal of Innovation and Applied Studies, 12(3),  644-658.

9.

DMN [Direction de la Météorologie Nationale], 1995. Spécial sécheresse. Bulletin d’information du Centre National du Climat et des Recherches Météorologiques, N◦ 2.

11.

Elbouqdaoui, K., Haida, S.,  Aboulabbes, O.,  Benaabidat, L., Zahraoui, M. and Ozer,  A., 2006. Evolution du régime pluviométrique et hydrométrique du bassin versant du Srou (Moyen Atlas, Maroc). Geo-Eco-Trop, 30(2), 41-56.

12.

Elghachi, M., 2007. La seille: Un système fluvial anthropisé (Lorraine, France). Thèse de doctorat, Metz, 62, 75.

13.

Ghenim, A., and  Megnounif, A., 2011. Caractérisation de la sécheresse par les indices SPI et SSFI (Nord-Ouest de l’Algérie). Revue scientifique et Technique, 18, 59-77.

14.

Gibbs, W. J., and Maher, J. V., 1967. Rainfall Deciles as Drought Indicators. Bureau of Meteorology Bulletin No. 48. Bureau of Meteorology, Melbourne, Australia.

18.

IPCC [Intergovernmental Panel on Climate Change], 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 151.

20.

Jouilil,  I., Bitar, K., Salama, H, Amraoui, M. A., and Tahiri, M., 2013. Sècheresse météorologique au bassin hydraulique Oum Er Rbia durant les dernières décennies. Revue Larhyss Journal, 12, 109-127.

23.

Łabędzki, L., Bąk, B., 2004. Standaryzowany klimatyczny bilans wodny jako Wskaźnik Suszy. Acta Agrophysica, 3(1), 117-124.

24.

Leveque, P., 1952. Géologie Appliquée aux Grands Travaux du Maroc (Zone française). Fascicule I. Les aménagements de l'Oued el Abid. XIX Congres Geologique International Monographies Regionales, 3, 5, 165.

27.

McKee, T. B., Doesken, N. J.,  and Kleist, J., 1995. Drought monitoring with multiple time scales. Preprints of the 9th Conference of Applied Climatology, Dallas, Texas, 15 (20), 233-236.

29.

Meylan, P., Catherine, A.F., and Musy, A., 2008. Hydrologie fréquentielle: une science predictive. Presses Polytechniques et Universitaires Romandes (PPUR), 56.

32.

Musy, A.  and Higy,  C., 2003. Hydrologie, Une science de la nature. Presses Polytechniques et Universitaires Romandes, 1, 309 p.

35.

Nouaceur, Z. and Laignel, B., 2015. Caractérisation des événements pluviométriques extrêmes sur la rive sud du bassin méditerranéen : études du cas du « quart nord-est » Algérien. Actes de la 18éme Colloque de l’Association Internationale de Climatologie, Liège, 573-578.

36.

OMM [Organisation Météorologique Mondiale],  2012. Guide d’utilisation de l’indice normalisé de précipitations. Genève, 17.

37.

Ouakhir, H., and Elghachi, M., 2018. Inondations anthropiques et cartographie des zones inondables: Exemple de la vallée de l’Oued El Abid (Haut Atlas Central) - Barrage de Bin El Ouidane, Climat, Eau et Société (CES’2015), 138.

40.

Pereira, L.S., Cordery, I. and Iacovides, I., 2002. Coping with Water Scarcity. UNESCO IHP VI, Technical Documents in Hydrology,  58, UNESCO, Paris. 6.

41.

Pita, M.F., 2000. Un nouvel indice de sécheresse pour les domaines méditerranéens. Application au bassin du Guadalquivir (sud-ouest de l'Espagne). Publications de l'Association Internationale de Climatologie, 228.

42.

Qadem, A., 2015. Quantification, modélisation et gestion de la ressource en eau dans le bassin versant du haut Sebou (Maroc). Thèse de Doctorat, Université Sidi Mohamed Ben Abdellah Fès, Maroc, 77.

43.

Qadem, A., El Ghachi,  M. and  Layati, E., 2019. Contribution de la télédétection a l’etude de l’évolution spatiotemporelle de la retenue du barrage Bin El-Ouidane (le Haut Atlas Central, Maroc).  Geomaghreb 15, 41-47.

44.

Rognon, P., 1997. Sécheresse et Aridité: Leur impact sur la désertification au Maghreb.
Sécheresse, 7, 289.

46.

Sarailidis, G., 2016. Analysis of Drought Variability in Sicily using SPI and SPEI Drought indexes. University of Catania, 6.

47.

Sebbar, A., Badri, w., Fougrach, H., Hsaine, M.  and Slaoui, A., 2011. Etude de la variabilité du régime pluviométrique au Maroc Septentrional (1935-2004), Sécheresse vol. 22, 3, 48-139.

49.

Soro, G. E., Anoumand, G. L., Goulabit, A., Srohorou, B., and Savane, I., 2014. Caractérisation des séquences de sècheresse météorologique à diverses échelles de temps en climat de type soudanais : cas de l’extrême nord-ouest de la Cote d’Ivoire. Revue Larhyss Journal, 18, 107-124.

51.

Stour, L., and Agoumi,  A., 2008. Sécheresse climatique au Maroc durant les dernières décennies. Hydroécol. Appl., 16, 215-232.

52.

Svoboda, M., and Fuchs, B., 2016.  Manuel des indicateurs et indices de sécheresse. Organisation Météorologique Mondiale (OMM) et partenariat mondial pour l’eau (GWP), 1173, 13.

55.

Van Lanen, H., Vogt, J.V, Andreu, J., Carrao, H., De Stefano, L., Dutra, E., Feyen, L., Forzieri, G., Hayes, M., Iglesias, A., Lavaysse, C., Naumann, G., Pulwarty, R., Spinoni, J., Stahl, K., Stefanski, R., Stilianakis, N., Svoboda, M., and Tallaksen, L., 2017. Climatological risk: droughts. In: Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I. (Eds.). Science for disaster risk management 2017: knowing better and losing less. EUR 28034 EN. Publications Office of the European Union, Luxembourg, 3.9.

58.

WMO [World Meteorological Organization], 2012. Standardized Precipitation Index User Guide. World Meteorological Organization, Geneva, Switzerland.

60.

Yacoubi,  M., 2001. Vers la définition d'une méthode d'alerte à la sécheresse, généralisable au contexte semi-aride marocain. Thèse de doctorat es-sciences agronomique, Institut Agronomique et
Vétérinaire Hassan II, Rabat, Maroc, 191.