2 . The attraction conditions and attraction coefficients
Let there be a sequence of i.i.d. random variables \(\mathrm {\{ X_{i} \}} \) with distribution function \(\mathrm {F \left( x \right)} \).
We will prove the following statements for \(\mathrm {F \in \mathcal{D} \left(\tilde{L} \right)}\); the dual statements of \(\mathrm {F \in \mathcal{D}\, (L̰ )}\) can be obtained by a simple conversion of the previous results. The quantile function \(\mathrm {Q \left( v \right)= inf\{x| F (x\geq v)\};Q(v)}\) is very important in this study and, by the results given here, also in the problems of the right tail estimation using the largest values of a sample (Annex 5 to Part 2).
The statements for \(\mathrm {F \in \mathcal{D} \left(\tilde{L} \right)}\), taking \(~\mathrm{ t > 0}\), are:
- \(F\) is attracted, for maxima, to the Weibull distribution \( \Psi _{ \alpha ~} \left( x \right) \) iff \( \bar{w}<+ \infty \) and \(\frac{1-F \left( \bar{w}-tx \right) }{1-F \left( \bar{w}-t \right) }\rightarrow x^{ \alpha }~ \) as \(t \rightarrow 0^{+} \) ; a system \(\left( \lambda _{k~ } ,\delta _{k} \right) \) of attraction coefficients is \(( \bar{w}, \bar{w}-Q ( 1-1/ k ) ) .\)
- \(F\) is attracted, for maxima, to the Gumbel distribution \(\Lambda \left( x \right) \) iff
\(\frac{Q \left( 1-tx \right) -Q \left( 1-t \right) }{Q \left( 1-te \right) -Q \left( 1-t \right) } \rightarrow log~x~as~t \rightarrow 0^{+},~ \) or
\(\frac{Q \left( 1-tx \right) -Q \left( 1-t \right) }{Q \left( 1-ty \right) -Q \left( 1-t \right) } \rightarrow \frac{log~x}{log~y}~as~t \rightarrow 0^{+},~ \) if \(y \neq 1, \) or
\(\frac{Q \left( 1- \left( 1-v \right) x \right) -Q \left( v \right) }{Q \left( 1- \left( 1-v \right) e \right) -Q \left( v \right) } \rightarrow log~x~as~v \rightarrow 1^{-}, \) or, also
\(\frac{Q \left( v^{x} \right) -Q \left( v \right) }{Q \left( v^{e} \right) -Q \left( v \right) } \rightarrow log~x~as~v \rightarrow 1^{-}~; \)
a system of attraction coefficients is \(\lambda _{k }=Q \left( 1-1 / k \right) ,~ \delta _{k}=Q \left( 1 - 1 / ek \right) -~Q \left( 1 - 1 /k \right) \) .
- \(F\) is attracted, for maxima, to the Fréchet distribution \( \Phi _{ \alpha } \left( x \right) iff~\bar{w}=+~ \infty \) and \(\frac{1-F \left( t \right) }{1-F \left( tx \right) } \rightarrow x^{ \alpha }~as~t \rightarrow + \infty \) ; a system of attraction coefficients is \(\left( \lambda _{k }~,~ \delta _{k} \right) = \left( 0,~Q \left( 1-1 / k \right) \right) \) (ultimately positive as \(\bar{w}=+~ \infty \) ).
Analogously to the attraction condition, for maxima, to Gumbel distribution given in terms of the quantile function we have also
- \(F\) is attracted, for maxima, to Fréchet distribution \( \Phi _{ \alpha } \left( x \right) \) iff
\(\frac{Q \left( 1-tx \right) -Q \left( 1-t \right) }{Q \left( 1-ty \right) -Q \left( 1-t \right) } \rightarrow \frac{x^{-1/ \alpha }-1}{y^{-1 /\alpha }-1}~as~t \rightarrow 0^{+}~if~y \neq 1~. \)
and to Weibull distribution \( \Psi _{ \alpha } \left( x \right) \) iff
\(\frac{Q \left( 1-tx \right) -Q \left( 1-t \right) }{Q \left( 1-ty \right) -Q \left( 1-t \right) } \rightarrow \frac{x^{-1/ \alpha }-1}{y^{-1 /\alpha }-1}~as~t \rightarrow 0^{+}~if~y \neq 1~. \)
If we do use the integrated von Mises-Jenkinson form we can say that \(F \left( . \right) \) is attracted, for maxima, to \(G \left( . \vert \theta \right) \) iff \(\frac{Q \left( 1-tx \right) -Q \left( 1-t \right) }{Q \left( 1-ty \right) -Q \left( 1-t \right) } \rightarrow \frac{x^{- \theta }-1}{y^{- \theta }-1} ( to~\frac{log~x}{log~y}~if~ \theta =0 ) as~t \rightarrow 0^{+}~if~y \neq 1. \)
Notes:
- There are other conditions for the attraction to the Gumbel distribution, but these seem to be the most operational;
- A function \(\mathrm{SV \left( x \right) } \) is said to be of slow variation (or slowly varying) at \(\mathrm{ + \infty} \) if it is defined at least in a right half-line (i.e., for all \(\mathrm{x > x_{0} }\)) and \(\mathrm{SV ( tx ) /SV ( x ) \rightarrow 1~as~x \rightarrow + \infty }\); the latter nomenclature can be used to say that \(\mathrm{F \left( x \right)}\) is attracted to the Weibull distribution if \(\mathrm{\bar{w}<+ \infty }\) and \(\mathrm{SV ( x ) = x^{ \alpha } \left( 1-F \left( \bar{w}-1/x \right) \right) }\) is slowly varying at \(\mathrm{ + \infty} \) and that \(\mathrm{F \left( x \right)} \) is attracted to the Fréchet distribution if \(\mathrm{\bar{w}=+ \infty }\) and \(\mathrm{SV ( x ) = x^{ \alpha } \left( 1-F ( x \right) ) }\) is slowly varying at \(\mathrm{ + \infty} \) ;
- To obtain the Fréchet distribution as a limit we must have \(\mathrm{\bar{w}=+ \infty }\) and to obtain the Weibull distribution as a limit we must have \(\mathrm{\bar{w}<+ \infty }\); the Gumbel distribution can be attained either with \(\mathrm{\bar{w}<+ \infty }\) or \(\mathrm{\bar{w}=+ \infty }\);
- The conditions for Weibull and Fréchet distributions to be limiting distributions for maxima are easy to work out; this is not the case for the Gumbel distribution;
- At the end of the section we will give conditions using \( \mathrm{F' ( x ) }\), when it exists, which are in general very handy to use.
- Dually we obtain the statements for \(\mathrm {F \in \mathcal{D} (L̰ )}\), supposing, also, \(~\mathrm{ t > 0}\). They are:
-
\(F\) is attracted, for minima, to the Weibull distribution \(W_{ \alpha } \left( x \right) =1- \Psi _{ \alpha } ( -x ) \) iff \(\underline{w}=- \infty \) and \(\frac{F(\underline{w}+tx)}{1-F(\underline{w}+x)}\to t^{\alpha} as\,x\to0^+\) ; a system of attraction coefficients is \((\underline{w} \,,Q(1/k)-\underline{w})\) .
-
\(F\) is attracted, for minima, to the Gumbel distribution \(1- \Lambda ( -x )\) iff\(\frac{Q \left( t~x \right) ~-Q \left( t \right) }{Q \left( e~t \right) - Q \left( t \right) } \rightarrow log~x~as~x \rightarrow 0^{+},~ \)or \(\frac{Q~ \left( 1-~v^{x} \right) -~Q~ \left( 1-v \right) }{Q~ \left( 1-~v^{e} \right) -~Q~ \left( 1-v \right) } \rightarrow log~x~as~ v \rightarrow 1^{-};\) a system of attraction coefficients is \(\left( Q \left( 1 / k \right) ,~Q \left( 1 / k \right) -Q \left( 1 / ek \right) \right) . \)
- \(F\) is attracted, for minima, to the Fréchet distribution \(\mathrm{1 - \Phi _{ \alpha } ( -x )} \) iff \(\underline{w}=-\infty \) and \(\frac{F \left( t \right) }{F \left( tx \right) } \rightarrow x^{ \alpha }~as~t \rightarrow - \infty \) ; a system of attraction coefficients is \(( 0,-Q \left( 1 / k \right)) (-Q \left( 1 / k \right) \) is ultimately positive as \(\underline{w}=-\infty \)).
7. Before going further, let us recall that each of the limiting distributions is attracted to itself; this is shown immediately using the above criteria. Notice also that the conditions on \(\mathrm{\bar{ w} }\) and \(\mathrm{\underline{w}}\) can help to eliminate one case for each \(\mathrm{F(x) }\) ; we used this in the previous examples.
Proofs:
We will follow a different order in the proofs for convenience. Let us consider the necessary and sufficient condition for attraction of maxima to \(\mathrm{\Phi _{ \alpha } ( x ) .}\)
Suppose \(\mathrm{\bar{w}=+ \infty }\) and \(\mathrm{\frac{1-F \left( t \right) }{1-F \left( t~x \right) } \rightarrow x^{ \alpha }~as~t \rightarrow + \infty. }\) To prove the result we have to show that for some \( \mathrm{ \{\lambda_{k},\delta _{k}\},F^k(\lambda_{k},\delta _{k}\,x)\to\Phi_{ \alpha }(x)}\)or, equivalently as said, that \(\mathrm{k \left( 1-F ( \lambda _{k }+ \delta _{k}~x \right) ) \rightarrow x^{- \alpha }~if~~x >0, }\) and \(\mathrm{k \left( 1-F ( \lambda _{k }+ \delta _{k}~x \right) ) \rightarrow + \infty~if~x<0. }\)
Let us take \(\mathrm{~ \lambda _{k }=0 }\) and \(\mathrm{\delta _{k}= Q ( 1-{l}/{k} ) }\). As \(\mathrm{\bar{w}=+ \infty }\), we have \(\mathrm{\delta _{k} \rightarrow + \infty }\) and for \(\mathrm{x<0,~ \delta _{k}~x \rightarrow - \infty, }\) implying \(\mathrm{k \left( 1-F\left( \delta _{k}~x \right) \right) \rightarrow + \infty~if~x<0. }\)
Consider now \(\mathrm{k \left( 1 - F \left( \delta _{k}~x \right) \right) ~for~~x > 0. }\) As \(\mathrm{lim~k ( 1 - F ( \delta _{k}~x ) )=lim \{ k \left( 1- F \left( \delta _{k} \right) \right) \frac{1-F \left( \delta _{k}~x \right) ~}{1-F \left( \delta _{k} \right) } \} }\) and by hypothesis when \(\mathrm{k \rightarrow + \infty~,~ \delta _{k} \rightarrow + \infty }\) the second factor \(\mathrm{\frac{1-F \left( \delta _{k}~x \right) ~}{1-F \left( \delta _{k} \right) } \rightarrow x^{- \alpha } }\); it remains to show that \(\mathrm{k ( 1-F ( \delta _{k} ) ) \rightarrow 1 }\). By the definition of \(\mathrm{\delta _{k} }\) one gets \(\mathrm{F ( {\delta} _{k}^{-} ) \leq 1- 1/k =F ( \delta _{k} ) }\) and so \(\mathrm{k \left( 1 - F ( \delta _{k} \right) ) \leq 1 }\); but \(\mathrm{F (\delta _{k}\,x) \leq F({\delta} _{k}^{-}) \leq1-1/k}\) for \(\mathrm{0< x < 1 }\) and so \(\mathrm{\frac{1-F \left( \delta _{k} \right) ~}{1-F \left( \delta _{k~ }x \right) } \leq k \left( 1-F \left( \delta _{k} \right) \right) }\) and \(\mathrm{\frac{1-F \left( \delta _{k} \right) ~}{1-F \left( \delta _{k~ }x \right) } \rightarrow x^{ \alpha }~ }\)and thus \(\mathrm{k \left( 1-F \left( \delta _{k} \right) \right) \rightarrow 1 }\) with \(\mathrm{k \rightarrow \infty}\), as desired. We have shown up to now that if the attraction conditions for \(\mathrm{\Phi _{ \alpha } ( x ) }\) are valid we can take as attraction coefficients \(\mathrm{ \lambda _{k }=0,~ \delta _{k}=Q \left( 1 - 1/k \right) }\) obtaining as limit \(\mathrm{\Phi _{ \alpha } ( x ) }\).
Let us now prove the converse. As \(\mathrm{ F^{k} ( \lambda _{k}+ \delta _{k~}x ) \rightarrow \Phi _{ \alpha } ( x ) }\) or, equivalently, \(\mathrm{k \left( 1-F \left( \lambda _{k}+ \delta _{k}~x \right) \right) \rightarrow x^{- \alpha } }\) we have also
\(\mathrm{ \left[ k \beta \right] \left( 1 - F \left( \lambda _{k}+ \delta _{k}~x \right) \right) \rightarrow \beta ~x^{- \alpha } }\),
and thus, with \(\mathrm{ x = \beta ^{1/ \alpha }~z }\),
\(\mathrm{[k\beta](1-F(\lambda _{k}+\delta _{k}\beta^{1/\alpha}z)) \rightarrow z^{- \alpha } }\),
from which, with
\(\mathrm{\left[ k \beta \right] ( 1- F( \lambda _{ \left[ k \beta \right] }+ \delta _{ \left[ k \beta \right] }z ) ) \rightarrow z^{- \alpha } , }\)
by Khintchine's convergence of types theorem we get \(\mathrm{\left( \lambda _{ \left[ k \beta \right] }- \lambda _{k} \right) / \delta _{k} \rightarrow 0 }\) and \(\mathrm{\delta _{ \left[ k \beta \right] }/ \delta _{k}~ \rightarrow \beta ^{1/ \alpha }. }\)
Take now, for fixed \(\mathrm{\beta >1,~ \lambda _{ \left[ k\beta \right] }= \lambda _{k},~ \delta _{ [ k \beta]}= \delta _{k}\mathrm{\beta ^{1/ \alpha } } }\). Define, now, a integer sequence \(\mathrm{ [k(s)]\,by\,k(1)=[k\beta],k(s+1)=[k(s)\cdot \beta],}\) and so we get \(\mathrm{ \lambda _{k \left( 1 \right) }= \lambda _{k}~,~ \delta _{k ( s)}= \delta _{k~} \beta ^{{ \left( s-1 \right) }/{ \alpha }} ( \rightarrow + \infty~as~ \beta >1 ) .}\) Then \(\mathrm{\lambda _{k \left( 1 \right) } / \delta _{k \left( s \right) } \rightarrow 0 }\) and we can write, as \(\mathrm{\lambda _{k \left( s \right) } }\) can be taken to be zero,
\(\mathrm{F^{k ( s ) } ( \delta _{k ( s ) } \,x ) \rightarrow \Phi _{ \alpha } ( x ) . }\)
Let us fix, now, \(\mathrm{x} \), choose \(\mathrm{y} \)— to increase indefinitely — and obtain \(\mathrm{s} \) such that \(\mathrm{\delta _{k \left( s \right) }~x \leq y \leq \delta _{k \left( s+1 \right) }~x} .\) Then we have
\( \mathrm{1 - F \left( \delta _{k \left( s+1 \right) }~x \right) \leq 1 - F \left( y \right) \leq 1 -F \left( \delta _{k \left( s \right) }\,x \right) }\)
and so
\(\mathrm{\frac{1 - F \left( \delta _{k \left( s+1 \right) }~x \right) }{1 - F \left( \delta _{k \left( s \right) }~t~x \right) } \leq \frac{1 - F \left( y \right) }{1 - F \left( t~~y \right) } \leq \frac{1 - F \left( \delta _{k \left( s \right) }~x \right) }{1 - F \left( \delta _{k \left( s \right) }~t~ x \right) } }\)
and as
\(\mathrm{\frac{k~ \left( s~+1 \right) }{k \left( s \right) }=\frac{ \beta ~k \left( s \right) - r}{k \left( s \right) } \rightarrow \beta }\)
\(\mathrm{(0\leq r<1 }\) is the fractional part) and as \(\mathrm{k \left( s \right) ( 1 - F ( \delta _{k \left( s \right) }~x ) ) \rightarrow x^{- \alpha }~as~k \rightarrow + \infty }\) we get, finally letting \(\mathrm{y \rightarrow + \infty }\) and so \(\mathrm{k \left( s \right) \rightarrow + \infty }\),
\(\mathrm{\frac{1}{ \beta }\,t^{ \alpha } \leq {lim}_{y \rightarrow \infty}\frac{1 - F \left( y \right) }{1 - F \left( y~ t \right) } \leq \beta\, t^{ \alpha } }\)
and thus, as \(\mathrm{\beta > 1 }\), as close to 1 as wished,
\(\mathrm{ \frac{1 - F \left( y \right) }{1 - F \left( y~ t \right) } \rightarrow t^{ \alpha } }\) as \(\mathrm{y \rightarrow \infty.}\)
We have shown, also, that as attraction coefficients we can take \(\mathrm{ \left( 0,Q \left( 1 -1/k \right) \right) }\) in choosing \(\mathrm{ \delta _{k} }\) such that \(\mathrm{ k \left( 1-F ( \delta _{k} \right)) \rightarrow 1 }\).
The conversion of this result concerning \(\mathrm{\Phi _{ \alpha } ( x ) }\) to \(\mathrm{\Psi _{ \alpha } ( x ) }\) is very easy. As seen, \(\mathrm{\bar{F} ^{k}(\lambda _{k}+ \delta _{k}~x ) \rightarrow \Phi _{ \alpha } ( x ) }\) is equivalent to \(\mathrm{\bar{F}^{k}( \delta _{k}~x) \rightarrow \Phi _{ \alpha } ( x ) }\); in addition, if we define \(\mathrm{\bar{F}( x)=F( \bar{w}-1/x ) }\) we see that with \(\mathrm{\bar{\delta_{k}} =\bar{Q} \left( 1-1/k \right) ,~\bar{F}^{k}( \bar{\delta_{k}} ~x) \rightarrow \Phi _{ \alpha } ( x ) }\) iff \(\mathrm{F^{k} \left( \bar{w}~-1/ \bar{\delta_{k} }~x \right) \rightarrow ~ \Phi _{ \alpha }( x ) }\) or \(\mathrm{F^{k} ( \bar{w}~-1/ \bar{\delta_{k}} ~x ) \rightarrow ~ \Phi _{ \alpha }( -1/x ) = \Psi _{ \alpha } ( x ) }\) .
Consequently for \(\mathrm{F }\) to be attracted, for maxima, to \(\mathrm{\Psi _{ \alpha } ( x ) }\) we must have \(\mathrm{\bar{ w}<+\infty }\), satisfy the attraction condition \(\mathrm{\frac{1-F \left( \bar{w}-t~x \right) ~}{1-F \left( \bar{w}-t~ \right) } \rightarrow x^{ \alpha } }\) as \(\mathrm{t \rightarrow 0^{+},~ }\)and take as attraction coefficients \(\mathrm{\lambda _{k}=\bar{w }, ~\bar{\delta} _{k}=\mathrm{\bar{\delta _{k}}^{-1} } }\) , or, more simply, \(\mathrm{\delta _{k}=\bar{w}-Q \left( 1 -1/k \right) }\).
Let us now go to the proof of the attraction condition for maxima, to the Gumbel distribution.
We have from \(\mathrm{F^{k} ( \lambda _{k}+ \delta _{k} ~x )\rightarrow \Lambda ( x ) }\) also \(\mathrm{F^{ \left[ k t \right] } ( \lambda _{ \left[ kt \right] }+ \delta _{ \left[ k t \right] } \,x ) \rightarrow \Lambda ( x ) }\) and thus \(\mathrm{ ( F^{k} ( \lambda _{ \left[ k t \right] }+ \delta _{ \left[ k t \right] }~x ) ) ^{ \left[ k t \right] /k} \rightarrow \Lambda \left( x \right) }\) or \(\mathrm{F^{k} ( \lambda _{ \left[ k t \right] }+ \delta _{ \left[ kt \right] }x ) \rightarrow \Lambda ^{1/t} \left( x \right) = \Lambda \left( x + log~t \right) }\) and so \(\mathrm{F^{k} ( \lambda _{ \left[ k t \right] }+ \delta _{ \left[ k t \right] } ( x-log~t ) ) \rightarrow \Lambda \left( x \right) }\). By the Khintchine’s convergence of types theorem we get
\(\mathrm{\frac{ \lambda _{ \left[ k t \right] }- \delta _{ \left[ k t \right] }log~t- \lambda _{k}}{ \delta _{k}} \rightarrow 0 }\)
and
\(\mathrm{\delta _{ \left[ k t \right] } / \delta _{k} \rightarrow 1 }\) ,
or equivalently \(\mathrm{ ( \lambda _{ \left[ k t \right] }- \lambda _{k} ) / \delta _{k} \sim log~t~and~ \delta _{ \left[ kt \right] } \sim \delta _{k}. }\)
Taking \(\mathrm{t = e }\) we get \(\mathrm{\delta _{k} \sim \lambda _{ \left[ k e \right] }- \lambda _{k} }\) and so the conditions are
\(\mathrm{\frac{ \lambda _{ \left[ k t \right] }- \lambda _{k}}{ \lambda _{ \left[ ke \right] }- \lambda _{k}} \rightarrow log~t\,~and~ \delta _{k} \sim \lambda _{ \left[ k e \right] }- \lambda _{k}, }\)
the last evidently defining \(\mathrm{ \delta _{k} }\) , asymptotically.
Thus if \(\mathrm{ F \in }\,\mathcal{ D}~\mathrm{ \left( \Lambda \right) }\), with attraction coefficients \(\mathrm{ \left( \lambda _{k}~, \delta _{k} \right) , }\) we know that
\(\mathrm{ \frac{ \lambda _{ \left[ k t \right] }- \lambda _{k}}{ \delta _{k}} \sim \frac{ \lambda _{ \left[ k t \right] }- \lambda _{k}}{ \lambda _{ \left[ k e \right] }- \lambda _{k}} \rightarrow log~t~~with~ \delta _{k} \sim \lambda _{ \left[ k e \right] }- \lambda _{k} }.\)
The relation \(\mathrm{k ( 1-F ( \delta _{k} + \lambda _{k}~x ) ) \rightarrow e^{-x} }\) suggests the use of \(\mathrm{{\lambda} _{k}^{*}=Q \left( 1-1/k \right) , {\delta} _{k}^{*}= {\lambda} _{ \left[ ke \right] }^{*}-{ \lambda }_{k}^{*}~, }\) with \(\mathrm{Q }\) the quantile function. Let us show that if \(\mathrm{ ({\lambda}^* _{[kt]}-{\lambda}^* _{k}) /{\delta} ^* _{k}\rightarrow\log\,t}\) then \(\mathrm{ F \in }~\mathcal{D}~\mathrm{ \left( \Lambda \right) }\) and by the Khintchine’s convergence of types theorem any \(\mathrm{ \left( \lambda _{k}~,~ \delta _{k} \right) }\) such that \(\mathrm{F^{k} ( \lambda _{k} + \delta _{k}~x ) \rightarrow \Lambda ( x ) }\) and \(\mathrm{\left( {\lambda} _{k}^{*}~,~{ \delta} _{k}^{*} \right) }\) are equivalent for the limit. For fixed \(\mathrm{t }\), from
\(\mathrm{\frac{{ \lambda }_{ \left[ k t \right] }^{*}- {\lambda }_{k}^{*}}{{ \delta }_{k}^{*}} \rightarrow log\,t }\) we get, for large \(\mathrm{k }\),
\(\mathrm{ {\lambda }_{k}^{*}+ {\delta} _{k}^{*} \left( log~t- \in \right) < {\lambda} _{k}^{*}=Q ( 1-\frac{1}{ \left[ k t \right] } ) < { \lambda }_{k}^{*}+ {\delta }_{k}^{*} \left( log~t \, + \in \right) , }\)
and so \(\mathrm{F ({ \lambda }_{k}^{*}+ {\delta} _{k}^{*} \left( log~t- \in \right) ) \leq F \left( Q \left( 1-{1}/{ \left[ k t \right] } \right) \right) \leq F ( {\lambda} _{k}^{*}+ {\delta} _{k}^{*} \left( log~t+ \in \right) ) . }\)
From the RHS inequality, as \(\mathrm{v \leq F ( Q \left( v \right) ) , }\) we get
\(\mathrm{1- {1}/{ \left[ k t \right] } \leq F ({ \lambda}_{k}^{*}+ {\delta} _{k}^{*} \left( log~t~+ \in \right) ) ; }\)
raising to power \(\mathrm{k }\) and letting \(\mathrm{k \rightarrow \infty }\) we get
\(\mathrm{e^{-1/t} \leq \underline{lim}} \mathrm{~F^{k} ( {\lambda }_{k}^{*}+ {\delta}_{k}^{*} \left( log~t+ \in \right) ) }\)
and so \(\mathrm{exp\,\{-e^{-(z-\in )}\}\leq\underline{lim}\,F^k({\lambda}^* _{k}+{\delta}^*_k\,z).}\)
For the LHS inequality, as \(\mathrm{{\lambda} _{k}^{*}+ {\delta} _{k}^{*} \left( log~t+ \in \right) < {\lambda} _{k}^{*} }\) we get, from \(\mathrm{F \left( Q \left( v \right) ^{-} \right) \leq v, }\)
\(\mathrm{F ({ \lambda} _{k}^{*}+ {\delta}_{k}^{*} \left( log~t~- \in \right) ) \leq 1-{1}/{ \left[ k t \right] }; }\)
raising to power \(\mathrm{k }\) and letting \(\mathrm{k \rightarrow +\infty }\) we get
\(\mathrm{\overline{lim}~F^{k} ({ \lambda }_{k}^{*}+{ \delta }_{k}^{*}~ \left( log~t- \in \right) ) \leq e^{-1/t} }\)
and in the same way
\(\mathrm{\overline{lim}~F^{k}({ \lambda}_{k}^{*}+{ \delta}_{k}^{*}~z ) \leq exp\{ -e ^{-(z+ \in )}\} }\)
Consequently
\(\mathrm{ \Lambda \left( z\, - \in \right)\leq \underline{lim}~F^{k} ( {\lambda }_{k}^{*}+ {\delta} _{k}^{*}~z ) \leq \overline {lim}~F^{k} ( {\lambda }_{k}^{*}+ {\delta} _{k}^{*}~z ) \leq \Lambda \left( z\,+ \in \right) }\)
and thus
\(\mathrm{F^{k} ( {\lambda} _{k}^{*}+ {\delta} _{k}^{*}~z ) \to \Lambda ( z), }\)
and any system of attraction coefficients is equivalent to \(\mathrm{\left( {\lambda} _{k}^{*}~,~{ \delta} _{k}^{*} \right) }\).
As a consequence we see that \(\mathrm{ F \in }~\mathcal{D}~\mathrm{ \left( \Lambda \right) }\) iff
\(\mathrm{\frac{Q \left( 1-1/ \left[ kx \right] \right) -Q \left( 1-1/k \right) }{Q \left( 1-1/ \left[ ke \right] \right) -Q \left( 1-1/k \right) } \rightarrow log~x~as~k \rightarrow \infty }\)
and we can use as attraction coefficients \(\mathrm{{\lambda} _{k }^{*}= Q \left( 1-1/k \right) }\) and \(\mathrm{{\delta} _{k}^{*}= {\lambda} _{ \left[ k e \right] }^{*}- {\lambda} _{k }^{*} }\)
Let us now give a continuous form to this discrete result. We will show that the condition above is equivalent to
\(\mathrm{\frac{Q \left( 1-t~x \right) -Q \left( 1-t \right) }{Q\left( 1-t~e \right) -Q \left( 1-t \right) } \rightarrow log~x~~as~t \rightarrow 0^{+}. }\)
Let \(\mathrm{k= \left[ 1/t \right] + 1~; }\) we will show that
\(\mathrm{\frac{Q \left( 1-t~x \right) -Q \left( 1-t \right) }{ {\delta} _{k}^{*}} \rightarrow -log~x~~as~t \rightarrow 0^{+}; }\)
by division we obtain
\(\mathrm{\frac{Q \left( 1-t~x \right) -Q \left( 1-t \right) }{Q\left( 1-t~e \right) -Q \left( 1-t \right) } \rightarrow log~x~~as~t \rightarrow 0^{+}. }\)
From \(\mathrm{~1/t<k \leq 1/t + 1 }\) we get \(\mathrm{1/k <t \leq 1/ \left( k-1 \right) ,~x/k < t ~x \leq x/ \left( k-1 \right) }\) and so \(\mathrm{ \left[ \left( k/x \right) +1 \right] ^{-1}<t~x < \left[ \left( k-1 \right) /x \right]^{-1} }\) and as \(\mathrm{Q \left( 1- \xi \right) }\) is non-increasing in \(\mathrm{ \xi }\) we have
\(\mathrm{~\frac{{ \lambda} _{ \left[ \left( k-1 \right) /x \right] }^{*}- {\lambda }_{k+1}^{*}}{ {\delta} _{k}^{*}} \leq \frac{Q \left( 1-t~x \right) -Q \left( 1-t \right) }{ {\delta} _{k}^{*}} \leq \frac{ {\lambda} _{ \left[ \left( k/x \right) +1 \right] }^{*}- {\lambda} _{k-1}^{*}}{ {\delta} _{k}^{*}} }\).
But
\(\mathrm{\frac{{ \lambda}_{ \left[ \left( k/x \right) +1 \right] }^{*}- {\lambda} _{k-1}^{*}}{{\delta }_{k}^{*}}=\frac{{ \lambda }_{ \left[ k/x \right] +1}^{*}-{ \lambda }_{ \left[ k/x \right] }^{*}}{{\delta} _{k}^{*}}+\frac{{\lambda }_{ \left[ k/x \right] }^{*}- {\lambda} _{k}^{*}}{{ \delta }_{k}^{*}}+\frac{ {\lambda }_{k}^{*}- {\lambda} _{k-1}^{*}}{ {\delta }_{k}^{*}}. }\)
The last summand converges to zero and the second to \(\mathrm{log \left( {1}/{x} \right) = - log~x }\). The first summand can be written as \(\mathrm{\frac{{ \lambda }_{ \left[ k/x \right] +1}^{*}- {\lambda} _{ \left[ k/x \right] }^{*}}{ {\delta} _{ \left[ k/x \right] }^{*}} \cdot \frac{ {\delta} _{ \left[ k/x \right] }^{*}}{ {\delta} _{k}^{*}}}\). The first factor converges to zero and the second to 1 as seen in the beginning of the proof because \(\mathrm{\delta _{ \left[ kx \right] }/ \delta _{k} \rightarrow 1}\) and so \(\mathrm{{\delta} _{ \left[ k/x \right] }^{*}/ {\delta} _{k}^{*} \rightarrow 1. }\) Thus the RHS of the inequality converges to \(\mathrm{ -log~x }\) and the same can be proved for the LHS.
Thus \(\mathrm{\frac{Q\left( 1-t~x \right) -Q \left( 1-t \right) }{ {\delta }_{k}^{*}} \rightarrow -log~x }\) and so the continuous condition for attraction is
\(\mathrm{\frac{Q \left( 1-t~x \right) -Q \left( 1-t \right) }{Q \left( 1-t~e \right) -Q \left( 1-t \right) } \rightarrow log~x~~as~t \rightarrow 0^{+}. }\)
This condition was given by Mejzler (1949) and was also stated by Marcus and Pinsky (1969) independently in another form; other important texts are de Haan (1970), (1971) and Balkema and de Haan (1972).
The proof of the results concerning attraction to \(\mathrm{\Phi _{ \alpha } ( x ) ~,~ \Psi _{ \alpha } ( x ) }\) and \(\mathrm{ G(z\vert\theta)}\) in terms of the quantile function runs in the same lines.
6 . Speed of convergence
The way a sequence of distributions of maxima converge to its limit is a very important question: either it converges quickly to the limit and this limit can be used as an approximation to the real distribution, or the approach is slow and the limit, from the statistical standpoint, has little relevance: if an error of \(\mathrm{\in \, = 10^{-2} }\) is obtained in one case for \(\mathrm{k=50}\) the approximation can be used for moderate samples — the approximation for small samples being practically speaking an illusion — but if the error \(\mathrm{\in \, = 10^{-2} }\) is a attained only for \(\mathrm{k \geq 10^{6} }\) the result has no practical use.
Suppose that \(\mathrm{F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) \rightarrow\tilde{L} \left( x \right) }\). We can think of two different approaches, briefly touched upon in the examples of the preceding section.
We may be interested in \( \mathrm {p_k=\begin{array}{c}\\ \mathrm{sup} \\ \mathrm{x} \end{array} \vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \vert }\): this maximum probability error gives an evaluation of the computation of the probability of overpassing \(\mathrm{\lambda _{k}+ \delta _{k}~x }\) —i.e. of \(\mathrm{1-F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) }\)— by evaluating it by \(\mathrm{1 -\tilde{L} \left( x \right) }\). If \(\mathrm{p_k \leq \eta }\) and \(\mathrm{\chi _{p} }\) is p-quantile of \(\mathrm{\tilde{L}(x)}\) we see that \(\mathrm{p- \eta < F^{k} \left( \lambda _{k}+ \delta _{k}~ \chi _{p} \right) <p+ \eta }\), and if \(\mathrm{\eta }\) is very small in comparison with \(\mathrm{p}\) (in general close to 1) we have good approximations to design, etc. It is evident that \(\mathrm{p_k=p_k \left( \lambda _{k}+ \delta _{k} \right) }\) and so an open question is to determine the best \(\mathrm{\left( \lambda _{k}, \delta _{k} \right) }\), i.e., the values that minimize \(\mathrm{p_k \left( \lambda ,\, \delta \right) }\).
The other error \(\mathrm{- }\) the linear one \(\mathrm{- }\) needs some care in its definition. The idea is to study the difference of the quantiles of \(\mathrm{F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) }\) and of \(\mathrm{\tilde{L}(x)}\), i.e., to compute \( \mathrm {d_{k}=\begin{array}{c} \\\mathrm{sup} \\ \mathrm{x} \end{array} \vert \lambda _{k}+ \delta _{k} Q \left( p^{1/k} \right) - \chi _{p} \vert }\). But a simple example shows that this definition can lead to results of no practical use. Suppose \(\mathrm{F(x)}\) is the exponential distribution which (with \(\mathrm{\lambda _{k}=log \,k, \delta _{k}=1}\)) is attracted for maxima to \(\mathrm{\Lambda \left( x \right) }\). As \(\mathrm{F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) \rightarrow \Lambda \left( x \right) }\) we have, approximately \(\mathrm{F^{k} ( y ) \approx \Lambda ( \frac{y-\lambda _{k}}{ \delta _{k}} ) }\) and so the exact p-quantile is \(\mathrm{Q \left( p^{{1}/{k}} \right) = - log \left( 1- p^{1/k} \right) }\)and the approximate one is \(\mathrm{\lambda _{k}+ \delta _{k} \Lambda ^{-1} \left( p \right) = log~k- log \left( - log~p \right) . }\) The maximum resulting linear error is then \( \mathrm {d_{k}=\begin{array}{c} \\\mathrm{sup} \\ \mathrm{p} \end{array} \vert log~k-log \left( -log~p \right) +log \left( 1-p^{{1}/{k}} \right) \vert =\begin{array}{c} \\\mathrm{sup} \\ \mathrm{p} \end{array}\vert log\frac{k \left( 1-p^{{1}/{k}} \right) }{-log~p} \vert =+ \infty }\), the value attained when \(\mathrm{p \rightarrow 0 }\). A careful study of the linear error (dependent also on \(\mathrm{(\lambda _{k~}, \delta _{k} )}\)) was not made but it leads to the computations being made in a shorter interval \(\mathrm{\in \, \leq p \leq 1- \in ’ }\) chiefly because, for maxima, we are essentially interested in values of \(\mathrm{ p }\) close to 1 and not to 0.
The relative probability error \( \mathrm {\begin{array}{c} \\ \mathrm{sup} \\ \mathrm{x} \end{array} \vert \frac{F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) }{1-\tilde{L} \left( x \right) } \vert =\begin{array}{c} \\\mathrm{sup} \\ \mathrm{x} \end{array} \vert ~\frac{1-F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) }{1-\tilde{L} \left( x \right) }-1 \vert }\) for the interval \(\mathrm{0<\tilde{L} ( x ) <1 }\) is also an open problem.
Although the more general results are due to Davis (1982) and Tiago de Oliveira (1991) we will only describe the statements of Galambos (1978); some important results are the ones of Balkema, de Haan and Resnick (1984), Galambos (1984) and Beirlant and Willekens (1990).
If \(F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) \to\tilde{L} \left( x \right) \) denote by \(z_{k} \left( x \right) =k \left( 1-F ( \lambda _{k}+ \delta _{k}~x \right) ) \)and for \(x> \underline{w}\) , \(\rho_{k} \left( x \right) = z_{k} \left( x \right) + log~\tilde{L}\left( x \right) \) : then for \(x> \underline{w}\) and \(z_{k} \left( x \right) \leq k/2 \) we have
\(\vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \vert \leq \tilde{L} \left( x \right) \left[ r_{1,k} \left( x \right) + r_{2,k} \left( x \right) +r_{1,k} \left( x \right) ~r_{2,k} \left( x \right) \right] \)
where
\(r_{1,k} \left( x \right) =\frac{2~z_{k}^{2}~ \left( x \right) }{k}+\frac{2~z_{k}^{4}~ \left( x \right) }{k^{2}}\frac{1}{1-q} \)
\(r_{2,k} \left( x \right) = \vert \rho_ k \left( x \right) \vert +\frac{ \rho _{k}^{2}~ \left( x \right) }{2}\cdot \frac{1}{1-s}\)
with \(q< 1 ,s< 1 \) such that \(z_{k}^{2} \left( x \right) \leq 3k~q/2 \) and \(\vert \rho k \left( x \right) \vert < 3~s \).
As can be seen, this statement does not apply for all \(\mathrm{x}\) but only for a part of the domain of \(\mathrm{F\left( x \right) }\) although is valid for all admissible sets \(\mathrm{\{ \left( \lambda _{k}~, \delta _{k} \right) \} }\).
The dual statement for minima is:
If \(1- \left( 1-F \left( \lambda _{k}+ \delta _{k}~x \right) \right) ^{k} \rightarrow L̰ \left( x \right) \) denote by \(z_{k} \left( x \right) =k~F \left( \lambda _{k}+ \delta _{k}~x \right) \) and for \( x<\bar{w}~, ~\rho_{k} \left( x \right) =z_{k}^{2} \left( x \right) + log \left( 1-L̰ \left( x \right) \right) \): then for \(x <\bar{w}~, z_{k}^{2} \left( x \right) \leq k/2\) we have
\(\vert 1- \left( 1 - F \left( \lambda _{k}+ \delta _{k}~x \right) \right) ^{k} \rightarrow L̰ \left( x \right) \vert \leq \left( 1- L̰ \left( x \right) \right) \left[ r_{1,k} \left( x \right) + r_{2,k} \left( x \right) + r_{1,k} \left( x \right) ,r_{2,k} \left( x \right) \right] ~ \)\(r_{1,k}\) and \(r_{2,k}\) having the same definition as before.
Davis (1982) gave a different approach in probability error evaluation using, essentially, the approximation —\(\mathrm{k~log~F^{k} \left( \lambda _{k}+ \delta _{k} \ x\right) \sim k \left( 1- F \left( \lambda _{k}+ \delta _{k}~x \right) \right) }\)in the interval \(\mathrm{0 <\tilde{L}\left( x \right) < 1} \). In Tiago de Oliveira (1991) we sketched a similar result, but with a more direct approach, that we will explain.
As \(\mathrm{a^{k}-b^{k}= \left( a - b \right) \sum _{j=0}^{k -1}a^{j}~b^{k-1-j} } \) we have \(\mathrm{\vert a^{k}-b^{k} \vert \leq k \vert a-b \vert~ } \mathrm{max( a^{k-1},~b^{k-1}) } \) for \(\mathrm{0 \leq a~ } \), \(\mathrm{b\leq 1 } \). If \(\mathrm{F^{k} ( \lambda _{k}+ \delta _{k}~x ) \to\tilde{L} ( x ) } \), as we see that \(\mathrm{\vert F^{k} ( \lambda _{k}+ \delta _{k}~x ) -\tilde{L} ( x ) \vert = \vert F^{k} ( \lambda _{k}+ \delta _{k}~x ) - ( \tilde{L}^{{1}/{k}} \left( x \right) ) ^{k} \vert \leq k \vert F \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L}^{{1}/{k}} \left( x \right) \vert ×} \)\(\mathrm{max ( F^{k-1} \left( \lambda _{k}+ \delta _{k}~x \right) ,\tilde{L}^{1^{{-1}/{k}}} ( x ) ) \leq k \vert F \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L}^{{1}/{k}} ( x ) \vert }\) . As the third factor (max) in the before last expression converges to \(\mathrm{\tilde{L}(x)}\) we could substitute it by \(\mathrm{\tilde{L}(x)}\) but this is practically irrelevant because we are interested in the large quantiles\(\mathrm{(\tilde{L}(x)\approx1)}\).
This the basic result is \(\vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \vert \leq k \vert F \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L}^{{1}/{k}}( x ) \vert \), the RHS being the principal part of the error, giving thus the order of convergence of \(\vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} ( x ) \vert \) to zero.
In the interval \(\mathrm{0<\tilde{L} ( x ) < 1 }\), introducing \(\mathrm{\tau_{k}( x ) = F( \lambda _{k}+ \delta _{k}~x) /\tilde{L}^{{1}/{k}} \left( x \right) - 1 }\), where, as it is immediate, \(\mathrm{k~ \tau_{k}( x) \rightarrow 0 }\) we can give a formulation analogous to the one of Davis (1982)\(\mathrm{\vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \leq k \vert \tau_{k} \left( x \right) \vert \tilde{L} \left( x \right) max ( \left( 1+ \tau_{k} ( x ) \right) ^{k-1},1 ) }\)and we see, once more, that the order of convergence of \(\mathrm{F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) }\) to \(\mathrm{\tilde{L}(x)}\) is the one of \(\mathrm{k~ \tau_{k}( x) \rightarrow 0 }\).
For the relative error of the tail evaluation we have
\(\mathrm{\vert \frac{1-F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) }{1-\tilde{L} \left( x \right) }-1 \vert \leq k \vert \frac{1-F \left( \lambda _{k}+ \delta _{k}~x \right) }{1-\tilde{L}^{{1}/{k}} \left( x \right) }-1 \vert \frac{1-\tilde{L}^{{1}/{k}} \left( x \right) }{1-\tilde{L} \left( x \right) } \leq \vert \frac{1-F \left( \lambda _{k}+ \delta _{k}~x \right) }{1-\tilde{L}^{{1}/{k}} \left( x \right) }-1 \vert ( 1+\frac{1-{1}/{k}}{2}1-\tilde{L} \left( x \right) ) }\)
using the development of \(\mathrm{ 1-\tilde{L}^{{1}/{k}} \left( x \right) }\) in the (alternating) Taylor series on \(\mathrm{ 1-\tilde{L}(x) }\).
Davis (1982) essential result can be obtained from \(\mathrm{ \vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \vert \leq k \vert F \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L}^{ {1}/{k}} \left( x \right) \vert , }\)as \(\mathrm{\tilde{L}^{{1}/{k}} ( x ) =exp ( \frac{1}{k}log\,\tilde{L} \left( x \right) ) =1+\frac{1}{k}log\,\tilde{L} ( x ) +O ( \frac{1}{k^{2}} ) }\), under the form \(\mathrm{\vert F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) -\tilde{L} \left( x \right) \vert \leq k \vert F \left( \lambda _{k}+ \delta _{k}~x \right) +log~\tilde{L} \left( x \right) +O \left( {1}/{k} \right) \vert }\), which shows that the order of convergence is, at most, \(\mathrm{O \left( {1}/{k} \right) }\) and is of that order only if \(\mathrm{k \left( 1- \lambda _{k}+ \delta _{k}~x \right) +log~\tilde{L} \left( x \right) =O \left( {1}/{k} \right) }\). The convergence is thus slow in general.
Finally it should be noted that in some cases, as for the normal distribution, a sequence of von Mises-Jenkinson forms \(\mathrm{G \left( z \vert \theta _{m} \right) }\), with \(\mathrm{\theta _{m} \rightarrow 0 }\) conveniently chosen, can give a better approximation to \(\mathrm{F^{k} \left( \lambda _{k}^{’}+ \delta _{k}^{’}~x \right) ( \left( \lambda _{k}^{’}~, \delta _{k}^{’} \right) }\)also convenient) than \(\mathrm{G \left( z \vert 0 \right) = \Lambda \left( z \right)}\), the Gumbel distribution. Although theoretically very interesting this point it has a small statistical interest because we can make the statistical choice of a distribution that fits better the data (see Chapter 4 and 8).
In Part 1 we used the traditional notation where \(\mathrm{k > 0 }\) (integer) is the index of a sequence; in the next parts, except for the probabilistic chapter of Part 3, we will use \(\mathrm{n(>0) }\) integer, which will be the sample size.