Annex-1: On The “Duality” between Extremes and Sums

1.Academia das Ciências de Lisboa (Lisbon Academy of Sciences), Lisbon, Portugal.
1.Academia das Ciências de Lisboa (Lisbon Academy of Sciences), Lisbon, Portugal.
For simplicity we will deal with some “duality” between sums (or averages) and maxima, the translation to minima being obvious from the relation \(\mathrm{ \mathrm{ \begin{array}{c} \mathrm{ n} \\ \mathrm{ { min} }\\\mathrm{1 } \end{array} }\{ X_{i} \} =-\mathrm{ \mathrm{ \begin{array}{c} \mathrm{ n} \\ \mathrm{ { max} }\\\mathrm{1 } \end{array} }\{ -X_{i} \}}}\).
The “duality” is expressed by the two columns in correspondence, where there are various gaps. \(\mathrm{ F \left( . \right) ~,~F \left( .~,~. \right) ,~... }\) and \(\mathrm{ \varphi \left( . \right) ~,~ \varphi \left( .,. \right) ,… }\)will denote the distribution functions and the characteristic functions.
Sums |
Maxima |
\(\mathrm{ S_{k}= \sum _{1}^{k}X_{i} }\) |
\(\mathrm{ M_{k}=\mathrm{ \begin{array}{c} \mathrm{ k} \\ \mathrm{ { max\\1} } \end{array} } \{ X_{i} \} }\) |
\(\mathrm{ \varphi x \left( t \right) =M_{X}\left( e^{itX} \right) :ch.f.of~X }\) |
\(\mathrm{ F_{X} \left( t \right) =Prob~ \{ X \leq x \} :d.f.~of~X }\) |
\(\mathrm{ X_{i}~indep.:\varphi _{S_{k}} \left( t \right) = \prod_{1}^{k}\varphi _{i} \left( t \right) }\) |
\(\mathrm{ X_{i}~indep.:F_{M_{k}} \left( x \right) = \prod_{1}^{n}F_{i} \left( x \right) }\) |
\(\mathrm{ X_{i}~i.i.d.: \varphi _{S_{k}} \left( t \right) = \varphi^{k} \left( t \right) }\) |
\(\mathrm{ X_{i}~i.i.d.:F_{M_{k}} \left( x \right) =F^{k} \left( x \right) }\) |
\(\mathrm{ \left( X,Y \right) ~indep: \varphi aX+bY \left( t \right) = \varphi X \left( a~t \right) ~ \varphi Y \left( b~t \right) }\) |
\(\mathrm{ \left( X,Y \right) ~indep:F_{max \left( X+a,Y+b \right) } }\) \(\mathrm{ =F_{X} \left( x-a \right) F_{Y} \left( x-b \right) }\) |
\(\mathrm{ \left( +~,~. \right) }\) |
\(\mathrm{ \left( max~,~+ \right) }\) |
\(\mathrm{ M \left( aX+b \right) =a~M \left( X \right) +b }\) |
\(\mathrm{ \cdots }\) |
\(\mathrm{ V \left( aX+b \right) =a^{2}~V \left( X \right) }\) |
\(\mathrm{ \cdots }\) |
If\(\mathrm{ \{ X_{i} \} }\) i.i.d. have \(\mathrm{ \mu ,~ \sigma ^{2} }\) then \(\mathrm{ \mathrm{ \begin{array}{c} \mathrm{ \varphi \left( t \right) \\{ ( s_{k}-{k \mu })/{\sqrt[]{k}}~ \sigma }} \\ \end{array} } \rightarrow \left( e^{-t^{2}/2} \right) }\) (Central Limit Theorem); in the general case “sometimes” the ch. f. of the normal law may be substituted by that of an indefinitely divisible law ; \(\mathrm{ \mu = \varphi_{X}^{’}{ \left( 0 \right) }/{i},~ \sigma ^{2}= \varphi _{X}^{’} \left( 0 \right) ^{2}- \varphi _{X}^{"} \left( 0 \right) }\), in the usual case. |
If\(\mathrm{ \{ X_{i} \} }\)are i.i.d. there “sometimes” exist \(\mathrm{ \left( \lambda _{k},~ \delta _{k}>0 \right) }\) such that \(\mathrm{ Prob \{ \left( M_{k}- \lambda _{n} \right) / \delta _{n} \leq x \} =F^{k} \left( \lambda _{k}+ \delta _{k}~x \right) \rightarrow \tilde{L} \left( x \right) ,~\tilde{L} \left( x \right) }\)then being \(\mathrm{ \Psi _{ \alpha } \left( x \right) ~,~ \Lambda \left( x \right) ~or~ \Phi _{ \alpha } \left( x \right) }\); for \(\mathrm{ ~ \Lambda \left( x \right) ~ }\)we have \(\mathrm{ n \left( 1-F \left( \lambda _{k} \right) \right) \rightarrow 1,k \left( 1-F \left( \lambda _{k}+ \delta _{k} \right) \right) \rightarrow e^{-1} }\) or \(\mathrm{ \delta _{n} \sim {1}/{n}\,F’ \left( \lambda _{n} \right) }\); there are corresponding results for \(\mathrm{ \Phi _{ \alpha } }\) and \(\mathrm{ \Phi _{ \alpha } }\). |
If \(\mathrm{ \left( X,Y \right) }\) has a binormal distribution standard normal margins and correlation coefficient then \(\mathrm{ Z=aX+bY }\) has a normal distribution \(\mathrm{ N \left( x/ \sigma \left( a,b \right) \right) }\)with \(\mathrm{ \sigma \left( a,b \right) =a^{2}+b^{2}+2~ \rho ~(a~b ) }\). |
If \(\mathrm{ \left( X,Y \right) }\) has a bivariate distribution with reduced Gumbel margins then \(\mathrm{ Z=max \left( X-a~,~Y-b \right) }\) has a Gumbel distribution \(\mathrm{ \Lambda \left( z- \lambda \left( a~,~b \right) \right) }\) with \(\mathrm{ \lambda \left( a,b \right) =log~ \{ \left( e^{-a}+e^{-b} \right) k \left( b-a \right) \} }\) |
If \(\mathrm{ \rho =0 }\)(independence), \(\mathrm{ \sigma \left( a,b \right) =1 }\) iff \(\mathrm{ a^{2}+b^{2}=1 }\); in the case \(\mathrm{ C \left( X~,~Z \right) =a }\). |
If \(\mathrm{ k \left( w \right) =1 }\) (independence), \(\mathrm{ \lambda \left( a,b \right) =0 }\) if \(\mathrm{ e^{-a}+e^{-b}=1 }\); in that case \(\mathrm{ Prob~ \{ Z \leq X-a \} =Prob~ \{ X-b~ \leq X-~a \} =e^{-a} }\). |